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Chapter 1

Introduction

1.1 General introduction
With the development of human marine activity comes the interest in using robots
to automate certain tasks. While underwater robot groups are envisaged for certain
missions, these groups are not as advanced as land and air robot groups. The reason
for this is that underwater constraints make it difficult to locate the robots. In
this context, underwater formation control is complex and an important research
subject. Various theoretical controllers have been proposed [57, 45] to make the
group’s behaviour more reliable.

However, new controllers need to be developed to consider the constraints that are
specific to underwater robots. The control of the robots is significantly affected by
hydrodynamics effects, communication issues and the heterogeneity of the group [105].
In addition, while formation controllers have been validated in simulation, there is
currently a need for validation on real systems.

As for every autonomous system, one step of the validation for the formation
controller is the stability analysis. A mathematical proof is required to show that the
controller makes the group of robots stable, in the sense that the robots cannot go out
of formation. Yet, as the complexity of these nonlinear systems increases, it becomes
difficult to study the stability of a group of robots with the conventional Lyapunov
method.

In parallel, the mathematical topic of Interval analysis has been shown to provide
efficient numerical approaches for solving various tasks in control theory [39, 74,
10, 121]. By enclosing the solution of the computations, intervals can be used to
develop numerical methods that guarantee their result. This result can so be used in
a mathematical proof. Therefore, there is an interest in developing computer-assisted
proofs for the study of systems that are too complex to study manually.

The main objective of this thesis is to develop guaranteed numerical methods that
can assist in the proof of stability for the formation control of a group of underwater
robots. This method will be designed for high-dimensional, nonlinear systems. It will
be adapted to different types of mathematical models. To answer this objective, this
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thesis is organised as follows.
Chapter 1 presents the contributions and the context of this thesis.
Chapter 2 presents some state-of-art regarding underwater robotics and formation

control. Some significant localisation and communication constraints are presented.
Different types of formation controllers are classified.

Chapter 3 presents the state-of-art on the formal mathematical tools and concepts
used in this thesis. It introduces the notions of dynamical systems, nonlinear stability
analysis, Lyapunov theory and positive invariance.

Chapter 4 presents the numerical mathematical tools and concepts used in this
thesis. It introduces the notions of interval analysis and ellipsoids. Then, some
numerical methods are presented: the guaranteed propagation of ellipsoid from [95]
and the guaranteed integration of the variational equation from [112].

In Chapter 5, discrete-time systems are studied. Their equilibrium point is as-
sumed locally exponentially stable, but its domain of attraction is unknown. Based
on the method from [95] a new method is introduced to compute a positive invari-
ant ellipsoid that is part of the domain of attraction of the equilibrium point. This
method is computationally tractable and can be used on high-dimensional nonlinear
systems. This method first solves a discrete Lyapunov equation to find a candidate
ellipsoid that is likely positive invariant. From this ellipsoid, an ellipsoidal enclosure
of the reachable set is computed using the guaranteed propagation method. If this
enclosure is strictly included in the initial ellipsoid, then the ellipsoid is positive in-
variant with respect to the system. If the inclusion is not verified, the process can
be repeated by shrinking the initial ellipsoid, which reduces the pessimism caused by
the non-linearity and makes the inclusion more likely to be verified. The method is
then applied to a formation control example with a discrete-time model. The same
example is used in the following chapters with different models.

In Chapter 6, this method is adapted for continuous-time systems. These systems
are also considered locally exponentially stable. The method can compute an ellipsoid
that is part of the domain of attraction. The continuous system is discretised and the
method of Chapter 3 is applied to the discretised system. This is possible because
the method does not require the analytical expression of the discrete mapping of the
discrete system, as long as the Jacobian matrix can be computed. In the case of the
discretised system, the Jacobian matrix can be computed via a guaranteed integration
of the variational equation. The method is applied in the example of Chapter 5 with
a continuous-time model. In addition, this chapter presents an auxiliary method that
proves that the ellipsoid is positive invariant with respect to the continuous system.
This auxiliary method consists in proving that the ellipsoid is positive invariant with
respect to a discretisation of the continuous system with en Euler scheme.

Chapter 7 presents a generalisation of the method from [95] and those developed in
previous chapters to consider singular mappings and degenerate ellipsoid. Such types
of mapping can appear in a hybrid system with projection or shock effects. The
method is generalised by tuning the eigenvalues of the outer ellipsoidal enclosure: the
zero eigenvalues are replaced with new eigenvalues computed via interval analysis.

In Chapter 8, the methods from Chapter 5 and 6 are adapted to synchronous
hybrid systems to compute a positive invariant ellipsoid that is part of the domain
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of attraction. The method is applied to the example of Chapter 5 and 6 with a
synchronous hybrid model.

Chapter 9 presents a real case implementation of a formation control example
with two underwater robots.

Finally, a concluding chapter synthesises the results presented in this thesis and
describes some potential directions for future works.

1.2 Contributions
1. An guaranteed numerical method to compute an ellipsoidal domain of attrac-

tion for a high-dimensional nonlinear discrete-time system. This domain of
attraction is a positive invariant ellipsoid in which the system is exponentially
stable. Under review at the IEEE Transaction on Automatic Control journal.
This contribution is presented in Chapter 5.

2. A variant of this numerical method to compute an ellipsoidal domain of attrac-
tion for a high-dimensional nonlinear continuous-time system. This domain of
attraction is a positive invariant ellipsoid in which the system is exponentially
stable. Published in [62]. This contribution is presented in Chapter 6.

3. The generalisation of the guaranteed propagation of ellipsoid from [95] to con-
sider singular mappings and degenerate ellipsoids. Published in [63]. This
contribution is presented in Chapter 7.

4. A guaranteed numerical method to compute ellipsoids in which a high dimen-
sional nonlinear synchronous hybrid system is exponentially stable. This con-
tribution was presented in Chapter 8.

5. Real-world experiments illustrating the robustness of formation control with
two ROVs. This contribution was presented in Chapter 9.

1.2.1 Journal Publication

• Morgan Louedec, Christophe Viel, Luc Jaulin - Computational tractable guaran-
teed numerical method to study the stability of n-dimensional time-independent
nonlinear systems with bounded perturbation - Automatica, July 2023, volume
153 [62]

• Morgan Louedec, Christophe Viel, Luc Jaulin - A guaranteed numerical method
to prove the exponential stability of nonlinear discrete-time systems - IEEE
Transaction on Automatic Control 2024 (under review)
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1.2.2 Conference and seminary

1.2.2.1 International

• IFAC ACNDC June 2024 (London) - Morgan Louedec, Christophe Viel, Luc
Jaulin - Outer Enclosures of Nonlinear Mapping with Degenerate Ellipsoids [63]
(article)

• SWIM June 2023 (Angers) - Propagation of degenerate ellipsoids towards com-
puter-assisted proofs (oral presentation)

• International Online Seminar on Interval Methods in Control Engineering - May
2023 - Enclompassing computation of the ellipsoidal image, in the singular case
(oral presentation)

• Submeeting June 2024 (St Raphael) - Proving the stability of a 2 ROVs form-
ation control with ellipsoids (oral presentation + experimental demonstration)

1.2.2.2 National

• Submeeting April 2023 (Guerledan) - Guaranteed state prediction of a group of
underwater robots, using ellipsoids and zonotopes (oral presentation + experi-
mental demonstration)

• Submeeting April 2022 (St Raphael) - Guaranteed collision free trajectory track-
ing (oral presentation)

• Journée GT2 Robotique Marine/Sous-marine December 2023 (Paris) - Achiev-
ing stable formation control for two ROVs (oral presentation)

• AID April 2023 (Paris) - Calcul englobant de l’image ellipsoïdale dans le cas
singulier (oral presentation)

• Journée Démonstrateur angers June 2022 (Angers) - Guaranteed collision-free
trajectory tracking of a DDBOAT fleet (oral presentation)

1.2.2.3 Laboratory

• Académie de marine February 2024

• ROBEX day 2022

• Journée pole IA & ocean 2022 and 2024

1.2.2.4 Vulgarisation

• Science en Theizh 2023 and 2024

• Fête de la science 2023
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1.2.3 Awards

• Submeeting April 2022

• Young Author Award, IFAC ACNDC June 2024

1.3 Context

1.3.1 Towards a sustainable exploitation of the ocean’s re-
sources

In modern human society, the oceans abound with valuable resources, serving as a
crucial reservoir for sustenance, energy, and raw materials. However, the utilisation
of these resources sparks contentious discussions, particularly in the face of climate
change and the UN Sustainable Development Goals 9 and 14 [81]. Ethical quandaries
emerge regarding the ethical extraction of oil, gas and minerals from the seabed [106].
Anticipated expansions within the fishing and aquaculture sectors raises concerns re-
garding the sustainability of heightened production levels [19]. Moreover, the devel-
opment of marine energy initiatives questions their environmental effect [76, 18], and
the governance of these maritime assets raises issues of national sovereignty, as some
countries are developing their navy [13].

Various potential future scenarios involve the creation of artificial infrastructures
both offshore and along the coastlines, such as oil rigs, wind farms, aquaculture in-
stallations, underwater mining facilities, vessel constructions, as well as the laying
of communication cables and pipelines. The development of these multipurpose off-
shore facilities also raise concerns about their viability and their ongoing maintenance
requisites [2].

1.3.2 Using robots to inspect offshore structures

Human construction deteriorates over time. Offshore and underwater structures,
in particular, are susceptible to fast deterioration due to the impact of pressure,
salinity, and marine life [69]. Since these structures represent a high financial and
material cost, it makes economic sense to extend their lifespan. To ensure the ongoing
functionality of these structures, regular inspections are imperative to detect fatigue
or leaks. The inspection cost would be compensated by the lifetime gain.

However, underwater inspections present greater complexity compared to those
conducted on land. Traditionally, human divers have been employed for this task
despite the significant risks and financial costs involved. In recent decades, there has
been a growing interest in leveraging robotics to assist or even replace human divers,
aiming for enhanced safety and cost-effectiveness once the technology reaches matur-
ity [2]. Currently, several projects [11, 123] are developing autonomous inspection
with a surface vehicle and an underwater robot working together, as illustrated by
Figure 1.1.
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Figure 1.1: Autonomous collaborative inspection of offshore structures with an Un-
manned Surface Vehicle (USV) and a Remotely Operated Vehicle (ROV)

1.3.3 The interest in using a feet of Underwater robots

As the complexity of missions grows, it becomes harder to use a single underwater
robot. Employing multiple robots proves beneficial in tackling diverse challenges as
presented in [118, 33, 119].

The first challenge arises with survivability, illustrated by Figure 1.2. The ocean
presents a dangerous and hazardous environment for robots, subjecting them to high
pressure, salt, corrosion, leaks, or collisions with rocks and unidentified objects. Con-
sequently, there is a significant risk of losing both the robots and the valuable data
they contain. When a single robot is deployed on a mission, any loss is simply un-
acceptable. However, with several robots on the mission, loss can be afforded. As
long as the majority of the fleet survives, the data of the mission can be retrieved.
Moreover, the lost robots can be saved by the rest of the fleet.

The second challenge arises with the time of the mission and the surface to cover.
A fleet of robots can carry more sensors and can allocate the work to cover a larger
area in less time. Moreover, the fleet can also make more complex missions relying
on cooperation and flexibility. These are the benefits of teamwork.

However, while a group of robots can be more efficient, their implementation
represents a technological challenge. Firstly, comparing a solitary underwater robot
with a group of robots, the budget constraint means that the robots in the group are
of lower quality than the solitary robot. The robots in the group are smaller and have
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fewer sensors, fewer tools, less battery, and less calculation capacity. Thus they are
less competent than the big high-quality solitary robots. As a result, their teamwork
is necessary to match the same performance as the solitary robot. Some robots from
the group will also have to be specialised by holding a specific tool or sensor, making
the group heterogeneous.

Furthermore, implementing the teamwork behaviours of the robots in their com-
puter requires additional effort. The robots must know how to make a group decision
when to communicate, how to avoid collision,... A fleet of robots also requires sev-
eral operators and an expensive logistic, especially during launching, to prepare their
mission, as the risk of failure increases with the number of vehicles.

Figure 1.2: United we stand

1.3.4 The importance of stability analysis in formation control

To navigate in a group, robots must follow rules. They are expected to follow their
mission, staying together and not bumping into each other or obstacles. Unfortu-
nately, robots don’t understand such an abstract demand. This is why humans must
imagine mathematical constraints which will make the robots behave as a group.

In a real application of formation control, there are plenty of small physical phe-
nomena and unpredicted external perturbations that have not been taken into account
in the design of the controller, but which impact behaviour of the robots. Thus, ro-
bots may behave in a chaotic, unpredictable and dangerous way which will probably
result in an outright failure of their mission, as illustrated by Figure 1.3.

To guarantee that perturbations and inaccuracies will not impact the robot’s be-
haviour and so the maintenance of the formation, a mathematical proof is required
to check the stability of each agent but also of the global system. In the presence of
complex problems with a large number of robots, it is sometimes complex to prove
the stability with formal methods. In this optic, this thesis provides new numerical
methods to study the stability of multi-agent systems.

12



Figure 1.3: Difference between a stable formation control and an unstable one
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Chapter 2

State of Art on underwater formation
control

2.1 Introduction
This chapter presents the technical aspects of the systems studied in this thesis: a
group of underwater robots. Section 2.2 presents the underwater robots as well as
the localisation and communication constraints of the underwater environment. Sec-
tion 2.3 presents several classifications of formation control that have been proposed
in the literature.

2.2 Underwater robots

2.2.1 The realm of underwater robots

Underwater robots are usually classified in two categories:

• The Remotely Operated Vehicles (ROV) are underwater unmanned vehicles
connected to the surface via an umbilical communication cable. Although they
can be remotely operated by humans, some ROV are designed with some level
of autonomy. Primarily used for seabed and structure inspection, ROVs are
made to be highly manoeuvrable with redundant thrusters controlling the six
degrees of freedom of the robot. Their modular design facilitates the easy
addition of sensors, arms, and tools. Most ROV have a rectangular shape
as the BlueROV2 from Figure 2.1a. Their umbilical, or tether, serves three
primary functions: enable real-time bidirectional data transmission (like stream
video), supply energy to the ROV, and prevent the loss of the robot during the
exploration. However, the umbilical limit ROV working area has drawbacks
such as collision risks, impact on ROV manoeuvrability due to umbilical inertia
and drag forces, entanglement, and cable breakage.

• The Autonomous Underwater Vehicles (AUV) are underwater unmanned ve-
hicles without umbilical cable. Since communication with a human operator
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is very limited or impossible, they are designed to be fully autonomous with
little communication with the surface. AUVs are also constrained by their lim-
ited battery life, which restricts mission duration. However, since their working
area is not limited, they can be used for high-resolution data mapping, en-
vironmental monitoring, and infrastructure inspection. Most of the AUVs are
torpedo-shaped and designed to travel long distances, as the Riptide from Fig-
ure 2.1b.

(a) The BlueROV2 from the BlueRo-
botics company is currently, a very
popular low-cost ROV used in many
Laboratories

(b) The Riptide is torpedo-shaped AUV with 3
fins and one thruster as the back

Figure 2.1: Underwater robots present at ENSTA Bretagne

In addition to the structure inspection, underwater robots are used for many more
applications, as presented in [33, 119], like:

• Exploration, research and collection of all types of ocean data. They can help
researchers in hydrography, oceanography, geology and archaeology. They can
be used to map the seabed.

• Rescue operation and search for a missing submarine or equipment (such as the
OceanGate Titan [77]), to the search of a plane wreck (such as the Malaysia
Airlines Flight MH370 [101]).

• Military use as mine countermeasures, mine reconnaissance detection and local-
isation, surveillance, rapid environmental assessment or anti-submarine warfare.

• Mining and extraction of seabed minerals like in recent project [59].

2.2.2 Additional issues in underwater robotics

In addition to the challenge of making a group of robots, there are other common
issues in the field of underwater robotics that need to be resolved if the technology
is to reach maturity. These issues includes obtaining reliable and accurate robot
location and robust underwater communication.
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2.2.2.1 Underwater Localisation

Underwater localisation is challenging because there is no global navigational sys-
tem. While mobile robotics relies primarily on a Global Navigation Satellite System
(GNSS) for localisation on land, GNSS does not work underwater because seawater
absorbs the electromagnetic waves used by the satellite to communicate with the
robot. To overcome this problem, underwater robots can localise by fusing the the
information they obtain from several sensors:

• When a robot surfaces, it can use the GNSS signal to know its position
on Earth. Then the robot remembers its diving position. This method re-
quires to return to the surface regularly and is therefore not applicable to deep
dives, where it can take several minutes or even hours to return to the surface.
Moreover, it assumes that the robot does not drift too much during the dive.

• The robot can measure precisely its depth using a pressure sensor. The
localisation is only challenging for the horizontal position.

• When the robots are close to the seabed, they can use a Doppler Velocity
Log (DVL) to measure their relative speed to the seabed

• When possible, the robot can also use a Sonar to detect or locate known un-
derwater structures.

• The robot can estimate its movement with its Inertial Measurement Units
(IMU).

• Some acoustic technologies, the Ultrashort Baseline (USBL), Short Base-
line (SBL) or Long Baseline (LBL) can measure the position of the un-
derwater robot at the cost of predeployed infrastructures (surface vessel or
beacons)[99].

IMU This sensor, composed of a magnetometer, an accelerometer and a gyroscope,
measures the attitude and the linear and angular accelerations of the robot. From this
measurement, the robot can deduce its speed and position continuously. However,
the localisation diverges quickly, depending on the IMU quality. A robot with a very
high-quality IMU can estimate its position at about 1 cm after hundreds of kilometres
travelled, but this type of IMU is larger and expensive, too much to be fitted on a
fleet. So in practice, the group’s robots only use its IMU to measure their attitude.

USBL Both the USBL and SBL systems consist of a transceiver and a transpon-
der. The transceiver serves as a device capable of transmitting and receiving acoustic
signals. In a USBL system, the transceiver incorporates three or more transducers,
each capable of emitting signals and spaced within a baseline of 10 cm. This baseline
denotes the distance between transducers. However, in SBL systems, the baseline is
longer. A transponder, on the other hand, receives a signal and autonomously trans-
mits a different one. Typically, the transceiver is situated beneath a surface vessel,
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while the transponder is affixed to the underwater robot. A USBL system can estim-
ate the relative directions and distances from the surface vessel to the robot. Relative
directions are determined through the phase difference of an acoustic signal across the
transducer array. In contrast, in an SBL system, relative directions are estimated by
measuring the time of arrival (TOA) of signals across different transducers. Ranges
are then computed by measuring the time taken for the acoustic signal to travel from
transmission to reception. Then, in an LBL system, three or more fixed beacons are
typically positioned on the seabed. Through acoustic triangulation of the determined
ranges, a robot can measure its position within the beacon area.

Selection of the sensors As explained before, the robots composing a fleet have
limited space for sensors. Most of the robots have a pressure sensor and a low quality
IMU because these a cheap and small sensors. Most of the AUVs have a GNSS to
locate when they reach the surface. The DVL is a larger and expensive sensor that
may only be equipped by the largest robots in the fleet. Sonars are also quite large and
are generally equipped by robots that use them for purposes other than localisation.
The USBL is about the size of a propeller and can be equipped on every robot, but
can only be used when the robot does not move far away from the surface transceiver.
As a result, depending on the context, underwater robots may use different sensors to
localise, but localisation remains one of the major challenges for underwater robotics.

In the fleet, even though the robots have low-precision sensors, they can share
their knowledge to filter information and improve the group’s localisation. When the
fleet is heterogeneous, the numerous small robots with low-precision sensors can use
the high-precision information of the few large robots. The localisation is however
often limited as described in the next section.

2.2.2.2 The wireless underwater communication

In a fleet, robots need to communicate not only to enhance their localisation but also
to inform the fleet of potential dangers or to make a group decision. To communicate,
cables can link mobile robots but they are subject to drag forces, to entanglement
with the environment or with themselves, and they limit the robots’ movements. Thus
wireless communication is widely used in mobile robotics. For underwater robots,
three main wireless communication technologies are proposed by the literature, as
presented in [119, 32]:

• Radio waves are widely used in robotics for wireless communication. They
have a high propagation speed, close to the speed of light. However, they are
only reliable at several meters in an underwater environment due to seawater
absorption. This absorption depends mainly on the conductivity of the water
but also the temperature. At lower frequencies, the propagation range is in-
creased but the data rate is reduced. A data rate between 1 to 10 Mbps can be
achieved between 1 and 2 m of range.

• Optical waves have a higher propagation range than radio waves with 1 Gbps
at 2 m making it reliable at several tens of meters. However, the turbidity
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of the water and water fouling can drastically reduce the propagation range.
Moreover, optical communication requires a line of sight between the emitter
and the receiver, which induces a need for direction tracking to maintain it.

• Acoustic waves can be reliable at a far greater distance, reaching several
kilometres but at the cost of a lower data rate, with 1.5 to 50 kbps at 500 m.
The data rate is lower because the speed of acoustic waves is slower compared to
electromagnetic waves with a 105 ratio. Moreover, with low speed, the Doppler
effect and delays have non-negligible effects on acoustic waves. Acoustic is
also subject to shadow zones, see [88]. Furthermore, low water depth can also
deteriorate the signal with multi-path caused by seabed and surface echoes. In
addition, acoustic transmitters can easily interfere with each other when they
are in a close frequency band. In a fleet, the robots must avoid using their
transmitters simultaneously.

All communication technologies are subject to noise and require specific filtering. The
choice of communication technology depends on environmental constraints as well as
communication requirements. Some systems may be able to use several communic-
ation methods depending on the situation, making them more reliable. In the case
of an underwater fleet of autonomous vehicles, radio waves and optical waves allow
a high data rate at close range and acoustic waves allow for a long communication
range.

2.3 Fleet formation control

2.3.1 Classification of formation controllers

A convenient rule is to make the robots move in a predefined formation to keep them
at a safe distance. In the past decade, many approaches have been considered to
control the relative distances and the bearing between the robots while manoeuvring
together. This is known as the formation control problem. To compare the proposed
solutions, they can be classified along different criteria, which are covered by several
surveys such as [118, 113, 105, 33, 119, 83, 57, 14]. First, three types of formation
problems can be distinguished:

• formation acquisition - robots are not initially in formation and must move into
formation.

• formation maintenance - robots start in the desired formation and must main-
tain it while moving as a group.

• formation reconfiguration - robots must change their formation shape as a re-
action to task requirements such as avoiding obstacles or passing through a
narrow passage.

Then, some keywords in formation control techniques can be identified:
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• The leader-follower approach [16, 75, 66, 17, 21], illustrated by Figure 2.2. At
least one robot is taken as leader and the other robots are designed as followers.
The leader follows a designed reference path. The followers pursue the leader
to maintain predetermined relative positions, distances or angles. This scalable
approach requires a simple controller design, as the followers have the same
behaviour. It is easy to implement and easy to add or remove vehicles in the
fleet. However, a fault in the leader robot’s behaviour leads to a chain reaction
of followers.

Figure 2.2: Leader-follower diamond Formation

• The behavior-based approach [53, 3], illustrated By Figure 2.3. Several con-
trollers are designed for different goals such as maintaining the desired forma-
tion, avoiding collisions or avoiding obstacles. The different control inputs are
summed with weight. These weights prioritise some goals over others. The res-
ulting controller meets several control objectives simultaneously. However, the
kinematic and dynamic features of the robots are not taken into consideration.
As a result, the fleet’s dynamic is hard to describe and the stability of the agent
and the fleet is hard to guarantee.

Figure 2.3: Behavior-based Formation with a sum of different common behaviours

• The flocking approach [96, 24], a sub-class of the behaviour-based, illustrated
by Figure 2.4. Robots have simple collective behaviours with simple iterations
such as the Reynolds rules. It can be seen as a sum of behaviours with artificial
potential fields. It is often used to create a swarm consensus.
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Figure 2.4: With Flocking, robots behave like a crowd

• The virtual structure approach [120, 55], illustrated by Figure 2.5. The fleet is
considered as a single body, called a virtual structure. The virtual structure’s
motion and shape are planned. Then, the desired motions for the robots are
determined from those of the virtual structure. It leads to better performance in
maintaining formation. However, makes the formation is more inflexible which
limits the ability to avoid obstacles. Moreover, if a robot is unable to follow the
virtual structure, the latter doesn’t wait for the robot, so the actual formation
is not the desired one.

Figure 2.5: Virtual structure diamond formation

• The artificial potential field approach [54, 85], illustrated by Figure 2.6. Every
robot follows the gradient of a prescribed potential field depending on the neigh-
bour’s position. The robots are attracted by other robots and targets, pro-
portionally to their relative distance. They are repulsed by other robots and
obstacles in inverse proportion to the distance. This approach does not need a
leader robot and creates interaction between all robots, or neighbours depend-
ing on the strategy. The controllers have low computational complexity, it is
simple to add or remove agents, and the fleet is more fault-tolerant. However,
this approach is subject to minimum local problems resulting in unpredicted
formations or unsolvable obstacle avoidance. Moreover, the obtained formation
is simple and doesn’t allow complex shapes.
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Figure 2.6: Artificial potential field diamond formation

• The consensus approach [84], illustrated by Figure 2.7. The robots asymptotic-
ally reach a common agreement on the formation, which can take various forms.
Thanks to graph theory, it requires a simple design for linear systems. How-
ever, strong communication is required because the robots need to exchange
information, unlike previous methods where formation could be maintained by
observation alone.

Figure 2.7: The rendezvous problem [23] is a common consensus example

The formation control approach also depends on the controlled variables. The control
of the position can be classified into:

• Position based control [124], illustrated by the Figure 2.8. The robot’s control
their global positions

(
pi,pj

)
with respect to a global coordinate system to track

a desired position
(
p∗
i ,p

∗
j

)
to achieve their desired formation. This approach

is often used when the fleet navigates in a known environment to reach some
referenced positions or avoid obstacles.
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Figure 2.8: In a position-based control, robots control their global positions to track
their desired position.

• Displacement based control [114, 104], illustrated by the Figure 2.9. Robots
control their relative position pi,j to some other robots to reach the desired
relative position p∗

i,j to achieve their desired formation. This approach is often
used to decouple the formation control and the navigation of the fleet. For ex-
ample, in a leader-follower approach, if all robot controls their relative position
with the leader, the navigation of the fleet is only controlled by the leader. This
approach is also often used in unknown environments.

Figure 2.9: In a displacement-based control, robots know global orientations but only
relative positions

• Distance based control [68, 82], illustrated by the Figure 2.10. The robots con-
trol inter-robot distances di,j to achieve their desired formation. This approach
is flexible in the sense that it can give rise to different formations in which the
robots do not have the same place. This approach is often used in swarms to
maintain the distance between the robots.
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Figure 2.10: In distance-based control, robots only know local relative position and
regulate their distances

The control of the attitude can also be global or relative. If a robot has 6-degrees of
freedom, the position control and the attitude control can be decoupled. Note that
for AUVs, the attitude often depends on the position control, as these robots have
limited degrees of freedom. For example, a torpedo-shaped AUV must point toward
its desired position to reach it.

The choice of the controller is also constrained by the type of information the
robot can sense or communicate. Having more information requires more sensing or
communication capacity. For most formations, knowing the relative pose between the
robots is sufficient.

2.3.2 Communications

Finally, Formation controls can be classified based on the communication architecture:

• Centralised [22], illustrated by the Figure 2.11. The robots can only commu-
nicate with a master. The master can be one of the fleet’s robots or an external
agent (buoy, surface boat, land computer, satellite,...). The master knows all
the information about the fleet and sends the objectives to the fleet. Centralised
architecture is easy to implement but has weak robustness regarding faults of
the master robot. The fleet size is also limited by the master’s communication
range and computing capacity. The master may also be saturated by too many
messages.
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Figure 2.11: Example of centralised communication architecture

• Hierarchical [60], illustrated by the Figure 2.12. It is an extension of the cent-
ralised architecture with sub-controllers. These sub-controllers process the com-
mand from the centralised controller and transmit new commands to their own
cluster of the fleet. Then, they also give feedback to the centralised controller.
This architecture increases the scalability of the centralised controller but is still
not robust regarding fault in the high hierarchy. The communication chain can
also break partially when one of the masters fails.

Figure 2.12: Example of hierarchical communication architecture

• Decentralised [53], illustrated by the Figure 2.13. Robots have no master and
make their own decisions based on the local information they can perceive. This
architecture overcomes the issues of centralised formation control. However, the
absence of communication between the robots limits robot cooperation.
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Figure 2.13: Example of decentralised communication architecture, where there is no
communication between robots

• Distributed [56], illustrated by the Figure 2.14. robots make they own decisions
but they can also communicate between them and share local information with
their neighbours. The formation is maintained with each robot synchronising
with its neighbours. This architecture has a better robustness and scalability
than the centralised one but requires more overall communications and com-
puting.

Figure 2.14: Example of distributed communication architecture

2.4 Conclusion
As presented in Section 2.3, there is a large variety of formation controllers. Un-
fortunately, underwater formation control is still in the early stages. Theoretical
solutions are developed under some strong assumptions which are difficult to realise
in underwater environments [119], making formation control ineffective in practical
applications. More non-neglectable constraints should be considered such as envir-
onmental disturbance, communication loss, delays [110, 117], actuators saturation,
unknown parameters in the dynamical model... Having these constraints will make
theoretical solutions more reliable in practice, but it will be more complex to study
robustness, stability, collision avoidance and obstacle avoidance. The next chapter
will present the classical formal stability analysis methods which give solid stability
proofs but are difficult to use for complex systems.
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Chapter 3

State of Art on formal stability

3.1 Introduction
This chapter presents the formal stability analysis background used in this thesis. To
study the stability of a group of robots, one must first propose a mathematical model
that describes the group’s behaviours. These models are nonlinear dynamical systems
and are presented in Section 3.2. Then, the classical methods to study the stability
of these systems, based on the Lyapunov theory, are presented in Section 3.3.

3.2 Dynamical Systems
A robot is a machine capable of moving in its environment according to what it per-
ceives. The robot’s motion is decided by an on-board computer, which processes the
information of the sensors and controls the actuators. In this way, the behaviour
of the robots is determined both by algorithms and by the laws of physics. Con-
sequently, a group of robots can be described as a cyber-physical system [100, 80],
as in Figure 3.1. This cyber-physical system is composed of a continuous-time dy-
namical system presented in Section 3.2.1 and a discrete-time system presented in
Section 3.2.2. In the automation field, cyber-physical systems are mathematically
described as hybrid systems which are presented in Section 3.2.3.
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Figure 3.1: Cyber-Physical model of a group of robots. The sensors, computers and
actuators form a feedback loop that is used to control the robots. The physical part
of the system is described by a continuous-time nonlinear dynamical system with the
state variable x (t). The computers of the robots act as a discrete-time system with
the state variable mk.

3.2.1 Continuous dynamical systems

The theory on dynamical systems is taken from [37, Section 7]. The mechanical
behaviour of the robots is generally described by an Ordinary Differential Equation
(ODE) such as

ẋ (t) = f (x (t)) (3.1)

where t ∈ R represents the time variable, f : Rn → Rn is a nonlinear function and
x (t) ∈ Rn represents the state of the robot at the time t. Since (3.1) fully describes
the system’s behaviour from the current state, this system of differential equations is
said to be an autonomous system. The function f can also depend on the time t or
on an input u (t) ∈ Rn, which can be used to take external commands into account.
The function f can also be interpreted as a vector field that the state x follows.

Sometimes, the solutions of (3.1) may only be defined locally in time to ensure
the existence and uniqueness of solutions. Local dynamical system are defined from
Initial Value Problem (IVP) presented by Definition 3.1.

Definition 3.1. (IVP) Solving the IVP consists in finding the state trajectory x that
verify the ODE (3.1) and the initial condition x (t0) = x0 where t0 ∈ R and x0 ∈ Rn.

Unfortunately, most nonlinear systems of differential equations are impossible to
solve analytically. In other words, having an analytical expression for solution of (3.1)
x (t) is rare.

Then, to describe the behaviour of the system for every initial condition x0, the
ODE (3.1) is associated with a dynamical system. A dynamical system is a mathem-
atical model that describes how a point in a given space evolves over time according
to a specific rule. The definition of continuous-time dynamical systems is given in the
following definition 3.2, illustrated by Figure 3.2.
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Definition 3.2. A continuous-time (or smooth) dynamical system is a continuously
differentiable function ϕ : R× Rn → Rn where ϕ (t,x0) = ϕt (x0) satisfies

• ϕ0 : Rn → Rn is the identity function

• ϕ (t,ϕ (s,x0)) = ϕ (t+ s,x0) , ∀t, s ∈ R, ∀x0 ∈ Rn.

Figure 3.2: Illustration of a continuous-time dynamical system with t2 > t1. The
trajectories passing by xa

0 ∈ Rn and xb
0 ∈ Rn are described by the flow function ϕ

and follow the vector field f (x).

For the sake of simplicity, in this thesis, continuous-time dynamical system will some-
times be referred to as a continuous system. In general, a continuous-time dynamical
system is related to the ODE (3.1) with the notion of flow given in Definition 3.3.

Definition 3.3. (flow) A continuous-time dynamical system ϕ : R×Rn → Rn is the
flow of the ODE

ẋ = f (x) (3.2)

with f : Rn → Rn if it verifies

∀t ∈ R,∀x0 ∈ Rn,
∂ϕ

∂t
(t,x0) = f (ϕ (t,x0)) . (3.3)

The flow ϕ can describe the solutions of the ODE, such that for any (t,∆t) ∈ R2

x (t+∆t) = ϕ (∆t,x (t)) . (3.4)

The ODE function f can also be defined from a flow ϕ, as

f :Rn → Rn, (3.5)

x0 7→
∂ϕ

∂t
(0,x0) . (3.6)

When f is nonlinear, it is not always possible to find an analytical expression for
ϕ (t,x0). The following example shows an approximation of the flow when an ana-
lytical expression cannot be found.
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Figure 3.3: Illustration of the example. The robot must reach a distance consensus.

Example 3.1. To illustrate the continuous-time dynamical system, imagine two ro-
bots, Blue and Red, as illustrated by Figure 3.3. They can move along a line. They
are controlled to maintain a desired distance d > 0 between them so that they can see
each other. The position of Blue is written xb (t) ∈ R, the position of Red is written
xr (t) ∈ R.

Considering the distance error

e (t) = xr (t)− xb (t)− d, (3.7)

the objective of the robots is to reduce this error to zero. Assume that the speed of
the two robots is controlled such that{

ẋr (t) = − arctan (e (t)) ,

ẋb (t) = arctan (e (t)) .
(3.8)

This system can be described by the state vector

x (t) =
[
xr (t) xb (t)

]T ∈ R2, (3.9)

and the ODE

ẋ (t) = f (x (t)) ,

= arctan (e (t)) ·
[
−1
1

]
= arctan

(([
1 −1

]
· x (t)− d

))
·
[
−1
1

]
. (3.10)

To our knowledge, there is no analytical expression for the solutions of (3.10). Thus
there is no known analytical expression for the flow ϕ of this dynamical system.
However, given a initial condition x0 ∈ R2 and a time t ∈ R, one can approximate
ϕ (t,x0) by an Euler Scheme. As illustrated by Figure 3.4, the trajectories of the
system converge towards the line of equation e = 0 which is the objective of the
robots. Note that in this example, the formation control is a consensus.
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Figure 3.4: Possible trajectories of the continuous-time dynamical system

3.2.1.1 The variational equation

When one has no analytical expression for ϕ, there exist some numerical method
to evaluate or approximate the value of ϕ (t,x0). Some of them will be presented
in Section 4.5. These methods often involve the use of the Jacobian of the flow ϕ
written

Jϕ (t,x0) =
∂ϕ

∂x0

(t,x0) , ∀t ∈ R, ∀x0 ∈ Rn, (3.11)

and illustrated in Figure 3.5. To make sure this derivative exists, f is now considered
to be continuously differentiable such that

f ∈ C1 (Rn) , (3.12)

making the flow ϕ also C1.
The Jacobian Jϕ is often computed via an IVP problem, using the variational

equation presented in Definition 3.4 and the Theorem 3.1.

Definition 3.4. (Variational equation). Consider the ODE ẋ = f (x) where f ∈
C1 (Rn). Let x (t) be a solution of this ODE. Then, the variational equation along
the solution x (t) is defined by

J̇ (t) = A (t) · J (t) , (3.13)
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Figure 3.5: Illustration of the flow’s Jacobian in two dimensions. The vectors Jϕ,1

and Jϕ,2 are the first and second columns of Jϕ. At the initial time, Jϕ,1 (0,x0) = e1

and Jϕ,2 (0,x0) = e2 with the Cartesian base (e1, e2).

where J (t) is a real matrix and A (t) = df
dx

(x (t)) is the Jacobian of f evaluated at
x (t).

Note that the variational can also be defined for a vector u (t) such that

u̇ (t) = A (t) · u (t) . (3.14)

Theorem 3.1. [37, Section 7] Consider the ODE ẋ = f (x) where f ∈ C1 (Rn).
Let x (t) be a solution of the IVP with x (t0) = x0. Let U (t) be the solution to the
variational equation (3.13) along x (t) that satisfies U (0) = J0. Then

J (t) =
∂ϕ

∂x0

(t,x0) · J0. (3.15)

Thus, with J0 = In, the solution of the variational equation is J (t) = Jϕ (t,x0).
In other words, computing Jϕ for a given initial state x0 at the certain time t comes
down to integrating the associated variational equation for a duration t.

3.2.2 Discrete dynamical systems

While continuous-time dynamical systems model continuous phenomenons, discrete-
time dynamical systems are used to model punctual phenomena, at specific moments
in time. Alternatively, they are also used to approximate continuous-time dynamical
system to implement them in numerical simulations. In the case of robotics, the
embedded computer of the robot is a discrete-time dynamical system. Here is a
common definition for discrete-time dynamical systems.
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Definition 3.5. (Discrete-time dynamical system) A discrete-time dynamical system
is a function ϕd : N× Rm → Rm such that

• for any m ∈ Rm, ϕd (0,m) = m

• for any (p, q) ∈ N and for any m ∈ Rm, ϕd (p,ϕ (q,m)) = ϕd (p+ q,m)

The discrete-time state is written m as ‘memory’ to differentiate it from the continu-
ous-time state x. Again, for the sake of simplicity, a discrete-time dynamical system
may sometimes be referred to as a discrete system. Given an initial vector m0 ∈ Rm,
the evolution of the discrete dynamical system is described by the sequence (mk)k∈N
such that mk = ϕd (k,m0) for any k ∈ N. This sequence is often described in practice
by its recursive formula

mk+1 = h (mk) , (3.16)

such that

∀m ∈ Rn,h (m) = ϕd (1,m) . (3.17)

The mapping is written h to differentiate it from the continuous-time mapping
f . Thus, compared to the continuous-time dynamical system, the computation of
ϕd (k,m0) is simple.

Example 3.2. Let us discretise the continuous dynamical system of Example 3.1
with an Euler Scheme to obtain a discrete-time dynamical system that can be used
to simulate the system. With a small discretisation time T > 0, assume that the
vector mk correspond to the state at the time tk = k · T . With an Euler scheme, the
recursive formula of the system is

mk+1 = h (mk)

= mk + T · f (mk) (3.18)

with f from (3.10). Given an initial condition m0 and a number of iteration k ∈ N,
one can compute discrete time trajectories, as illustrated by Figure 3.6. With a small
T , the behaviour of the system is visually similar in continuous time and in discrete
time.

3.2.3 Hybrid systems

A hybrid system has both continuous-time and discrete-time behaviour [65]. Depend-
ing on the interaction between the continuous and the discrete, the hybrid system can
become very complex to describe.

Moreover, the notion of hybrid systems can be associated with the notion of cyber-
physical systems[100, 102, 116]. Cyber-physical means that there is an interaction
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Figure 3.6: Possible trajectories of the discrete-time dynamical system

between computational software and a physical object. But from a control theory
perspective, a cyber-physical object is a hybrid as well. These are two different
paradigms in different fields, which apply to robots.

A general definition of a hybrid system can be found in [29] and in [30], here
presented in Definition 3.6.

Definition 3.6. (Hybrid dynamical system) [30] A hybrid dynamical system is a
sextuple

H = (Q,D,f , E , g,h) , (3.19)

where:
Q is a set of modes, which in most situations can be identified with a subset of

the integers,
D is a domain map, which gives, for each q ∈ Q, the set Dq ∈ D in which the

continuous state z evolves,
f : Q×Rp → Rp is a flow map, which describes, through the differential equation,

ż (t) = f (z (t)) , (3.20)
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the continuous evolution of the continuous state variable z,
E ⊂ Q×Q is a set of edges, which identifies the pairs (q, q′) such that a transition

from the mode q to the mode q′ is possible,
g : E → Rp is a guard map, which identifies, for each edge (q, q′) ∈ E , the set

g (q, q′) ⊂ Rp to with the continuous state z must belong so that a transition from q
to q′ occur,

h : E × Rp → Rp is a reset map, which describes, for each edge (q, q′) ∈ E , the
value to which the continuous state z ∈ Rp is set during a transition from mode q to
mode q′.

This thesis will only cover hybrid systems where discrete behaviours happens at
deterministic times. In other words, whatever the initial conditions, a mode trans-
ition always occurs at the same time. These systems can be called synchronous
hybrid systems and are presented by Definition 3.7. The extension of the thesis
contributions to all hybrid systems will be the subject of future studies.

Definition 3.7. (synchronous hybrid system) A synchronous hybrid dynamical sys-
tem is a hybrid system H = (Q,D,f , E , g,h) where the time t is one of the compon-
ents of the continuous time vector z and where for each edges (q, q′), there is a set of
times Tq′ ⊂ R such that the guard of (q, q′) is

g (q, q′) = {z ∈ R|t ∈ Tq′} . (3.21)

For convenience, a synchronous hybrid system can be represented such that:

• the time t is separated from the rest of the state vector z,

• Q = {1, 2, . . . , N} is identified with N integers. The mode 1 can also be con-
sidered mode N+1 and the mode N can also be considered mode 0.

• the only possible edges are (q, q + 1) for all q ∈ Q and all edge transitions are
periodic with a period T > 0.

Thus there is a list of increasing time {τ1, τ2, . . . τN} ∈ [0, T [ such that for all q ∈ Q
and all k ∈ Z, at time

tq,k = τq + T · k, (3.22)

the transition (q − 1, q) happens, i.e.

∀q ∈ Q, Tq = τq + T · N. (3.23)

For convenience, τ1 = 0. One can also represent the time with one indent number
such that for all j ∈ N

tj = τj−⌊ j−1
N ⌋·N +

⌊
j − 1

N

⌋
· T

= t(j−⌊ j−1
N ⌋·N),(⌊ j−1

N ⌋). (3.24)
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Figure 3.7: Time representation of a synchronous hybrid system with N = 3

As a result, each mode q ∈ Q last for a duration

Tq = (tq+1 − tq) > 0, (3.25)

such that
∑
q∈Q

Tq = T . This time representation is illustrated by Figure 3.7.

Therefore, a synchronous hybrid system can be represented by{
ż (t) = f q (z (t)) , if t ∈ ]tq,k, tq,k + Tq[ ,

z
(
t+q,k

)
= hq (z (tq,k)) ,

(3.26)

where t+q,k represent the time instant just after the discrete update at time tq,k, and
such that for all q ∈ Q, f q (z) = f (q, z) and hq (z) = h (q, z). As a result, the
synchronous hybrid system has a cycle mapping

hcycle = ϕN,TN
◦ hN ◦ . . . ◦ ϕ2,T2

◦ h2 ◦ ϕ1,T2
◦ h1

where ϕq,Tq
is the flow of f q for a duration Tq, as illustrated by Figure 3.8.

Example 3.3. To have a practical illustration of a synchronous hybrid system, con-
sider the robots of the example 3.1 with the continuous-time dynamical system (3.10).
Assume that the positions of the robots are now periodically measured with the period
T > 0. These measurements create a cycle composed of two discrete-time events, il-
lustrated by Figure 3.9. For every k ∈ N, the position of Red xr (tr,k) is measured at
the time tr,k = k · T , and, the position of Blue Blue xb (tb,k) is measured at the time
tb,k = k · T + T

2
. The cycle of measurement is repeated indefinitely.

Thus, this system can be represented with two modes qr = 1 and qb = 2 with two
possible edges (qr, qb) and (qb, qr). The transition from qr to qb happens on the times
tb,k. The transition from qb to qr happens on the times tr,k.
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Figure 3.8: Illustration of the cycle of a synchronous hybrid system.

Figure 3.9: Clock and discrete-time events of the system
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Then, the measurements are memorised by the robots in the shared memory
variables

mr,k = xr (tr,k) ,∀t ∈ [tr,k, tr,k+1[ ,

mb,k = xb (tb,k) ,∀t ∈ [tb,k, tb,k+1[ .

Moreover, at any time, the speed of the robot is set as[
ẋr (t)
ẋb (t)

]
= arctan ((mr (t)−mb (t)− d))

[
−1
1

]
. (3.27)

Then, consider the continuous state vector

z (t) =
[
xr (t) xb (t) mr (t) mb (t)

]T ∈ R4. (3.28)

From (3.27) the state z is subject to the vector field

f rb : R4 → R4,

z 7→


− arctan (kp · (mr −mb − d))
arctan (kp · (mr −mb − d))

0
0

 , (3.29)

that describes the continuous-time evolution of the system such that

ż = f rb (z) . (3.30)

Moreover, the state z is subject to the two measurement events. At time tr,k, the
state z is updated with the function hr given by

hr :R4 → R4,

z 7→
[
xr xb xr mb

]T (3.31)

such that

z
(
t+r,k

)
= hr (z (tr,k)) . (3.32)

The time t+r,k is the instant just after the update perform at instant tr,k. In the same
way, at time tb,k, the state z is updated as

z
(
t+b,k

)
= hb (z (tb,k)) , (3.33)

with the function hb given by

hb :R4 → R4,

z 7→
[
xr xb mr xb

]T
. (3.34)
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Some trajectories of the system are illustrated by Figure 3.10. As illustrated by
Figure 3.11, given an initial condition z (0), the evolution of the state z is described
by a composition of with the flow ϕT

2
of f rb for a time T

2
and with the discrete-time

updates functions hr and hb.
Note that in this example, the state vector z is split to differentiate the phys-

ical variables of the system x (t) = [xr (t) , xb (t)] and the memory variables mk =
[mr (t2k) ,mb (t2k+1)] that only update with the discrete-time event.

Figure 3.10: Possible trajectories of the synchronous hybrid dynamical system
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Figure 3.11: Time evolution of the state of the system. The time evolution of a
synchronous hybrid system is cyclic
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3.2.4 Lipschitz functions

In Chapter 5 and 8, some mappings will be considered K-Lipschitz, as presented
in Definition 3.9. This definition relies on the notion of metric space, presented in
Definition 3.8. As presented by Theorem 3.2, Lipschitz functions are also C1 with
bounded derivative.

Definition 3.8. (Metric space) Let X be a non-empty set. A mapping d : X×X → R
is a metric on X if for all x and y in X , one verifies

d (x,y) = 0 ⇔ x = y (separation) , (3.35)
d (x,y) = d (y,x) (symmetry) , (3.36)

∀z ∈ X , d (x,y) ≤ d (x, z) + d (y, z) (triangle inequality) . (3.37)

Given a matrix d on a set X , the paid (X , d) is a metric space.

Definition 3.9. (K-Lipschitz). Let K > 0 and consider the metric spaces (Rn, dn)
and (Rm, dm). The mapping f : Rn → Rm is K-Lipschitz if and only if for all
(xa,xb) ∈ Rp one has

dm (f (xa) ,f (xb)) ≤ K · dn (xa,xb) . (3.38)

Any finite-dimensional vector space X with a norm ∥.∥ is a metric space with a
metric

d∥.∥ : Rn × Rn → R,
x,y 7→ ∥x− y∥ . (3.39)

Theorem 3.2. Let f : Rn → Rm be K-Lipschitz. Then f is C1.

When the function f of a continuous-time dynamical system is K-Lipschitz, then
it verifies Theorem 3.3.

Theorem 3.3. [37, Chapter 17.3] Let f : Rn → Rn be Lipschitz over the metric
space

(
Rn, d∥.∥

)
with a constant K. Let xa (t) and xb (t) be solutions of the ODE

ẋ (t) = f (x (t)) , (3.40)

on the time interval [t0, tf ]. Then, for all t ∈ [t0, tf ], one has

d∥.∥ (xa (t) ,xb (t)) ≤ d∥.∥ (xa (t0) ,xb (t0)) · eK(t−t0). (3.41)
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Figure 3.12: Illustration of stable and unstable equilibrium points, with the notion of
stable neighbourhood.

3.3 Stability analysis
As presented in Chapter 1, it is important for the formation control to show some
form of stability to make sure that the robots will stay in formation. Mathematically
speaking, this problem consists in proving that the formation is a stable equilibrium
point for the dynamical system that models the group of robots. An equilibrium
points of a dynamical system is a constant trajectory. It is defined as stable if the
nearby trajectories of the system stay nearby after some time.

Figure 3.12 is a common illustration of equilibrium points. In this example, a
marble is subject to gravity. When the marble is at the centre of an upright bowl
or an upside-down bowl, it remains still: the centre position is an equilibrium point.
When the marble is moved away from the centre of the upright bowl, it will come
back to the centre. However, when the marble is moved away from the centre of the
upside-down bowl, it will diverge away. Thus, the equilibrium point is stable when
the bowl is upright and unstable when the bowl is upside down.

Real systems are often only stable in a neighbourhood of the equilibrium point.
For example, if the marble exits the upright bowl, it won’t come back. As a result,
describing the size and shape of the stable neighbourhood is also a common topic in
stability analysis.

This Section introduces some background on the stability of equilibrium points
for dynamical systems, based on the Lyapunov Theory, as presented in the books [44,
Chapter 4] and [37] and in [7].

3.3.1 Stability of nonlinear continuous dynamical systems

The Lyapunov stability is a very common stability analysis method for nonlinear
dynamical systems. It was introduced by Lyapunov in 1892 [64]. The main interest
of the Lyapunov stability is that it studies the system’s stability without solving
nonlinear ODE. In this Section, consider the nonlinear continuous dynamical system
given by the ODE

ẋ (t) = f (x (t)) , (3.42)

as in Section 3.2.1. Assume that x̄ is an equilibrium point of the system, such that
f (x̄) = 0, making the trajectory x (t) = x̄ a constant solution of the ODE.
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Remark 3.1. For convenience, and without loss of generality, the equilibrium point is
considered at the origin of Rn such that x̄ = 0. Even when the equilibrium point is
not the origin x̄ ̸= 0, it can be shifted by the change of variable y = x− x̄. The new
variable y is solution to the ODE

ẏ (t) = ẋ (t) ,

= f (x (t))

= f (y (t) + x̄)

= g (y (t)) (3.43)

with g (y) = f (y + x̄). The equilibrium point of the ODE (3.43) is ye = 0. Since
the ODE (3.42) and (3.43) represent the same system, it is more convenient to choose
the representation with the equilibrium point at the origin.

3.3.1.1 Stability definition

The stability of a system is illustrated by Figure 3.13 and defined by the following
definition.

Definition 3.10. Let x̄ = 0 be an equilibrium point for the system of equation (3.42).
For this system, the equilibrium point is:

• Stable, if for every ϵ > 0, there exists δ > 0 such that

∥x(0)∥ < δ ⇒ ∥x(t)∥ < ϵ,∀t ≥ 0 (3.44)

• Unstable, if it is not stable.

• Attractive, if there exists δ > 0 such that

∥x(0)∥ < δ ⇒ lim
t→∞

∥x(t)∥ = 0 (3.45)

• Asymptotically stable, if it is stable and attractive.

• Exponentially stable, if it is asymptotically stable and there exist α > 0, β > 0,
δ > 0 such that

∥x(0)∥ < δ ⇒ ∥x(t)∥ ≤ α∥x(0)∥e−βt,∀t ≥ 0 (3.46)

A stable equilibrium point means that if the system is initialised near the equilibrium
point, it will stay nearby. An attractive equilibrium point means that if the system is
initialised in a specific neighbourhood of the equilibrium point, the state will converge
towards the equilibrium point. In addition, exponential stability means that the
system’s convergence follows an exponential function.
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Figure 3.13: Illustration of instability (A), stability (B), asymptotic stability (C)
and exponential stability (D) one a one-dimensional system. Trajectories near the
equilibrium point xe remain in a neighbourhood of this point.
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3.3.1.2 Local and global asymptotic stability

Many systems are only asymptotically stable up to a certain distance from the equi-
librium point. For these systems, one can determine its region of attraction

Ωatt =
{
x0 ∈ Rn| lim

t→∞
ϕ (t,x0) = x̄

}
(3.47)

where ϕ is the flow of the ODE (3.42). When Ωatt = Rn, the asymptotic stability
is global. When Ωatt ⊂ Rn, the asymptotic stability is local. Note that when no
analytical expression for ϕ is known, it is hard to describe Ωatt analytically.

3.3.1.3 Stability analysis by linearisation

In some cases, stability can be proved by linearising the system and by using the
Theorem 3.4.

Theorem 3.4. Consider the nonlinear system

ẋ (t) = f (x (t)) , (3.48)

where f : D → Rn is continuously differentiable on the domain of definition D ⊆ Rn,
and where the origin x̄ = 0 is an equilibrium point of the system. This system can be
linearised at the origin into the LTI (linear time-invariant) system

ẋ (t) = A · x (t) , (3.49)

with the Jacobian matrix

A =
∂f

∂x
(0) . (3.50)

The equilibrium point x̄ = 0 of the nonlinear dynamical system (3.48) is locally
asymptotically stable if Re (λi) < 0 for all eigenvalues of A (i.e. A is Hurwitz). The
equilibrium point is unstable if Re (λi) > 0 for one or more of the eigenvalues of A.

However, this Theorem has several practical limits:

1. When the eigenvalues of A have negative real part but some eigenvalues have
a null real part Re (λi) = 0, it is not possible to conclude on the stability of
the equilibrium point for the nonlinear system. Thus, while linearisation is a
simple and fast method to study stability, it can not study all systems.

2. This theorem only proves local stability and gives no information on the region
of attraction.

3. Eigenvalues are usually computed by computers. However, it is challenging to
find an algorithm that guarantees the computation of the eigenvalues.
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3.3.1.4 Proving stability with Lyapunov functions

Lyapunov functions are a more powerful tool to study stability. They are used with
the following theorem.

Theorem 3.5. Consider the nonlinear system

ẋ (t) = f (x (t)) ,

with f : Rn → Rn, such that x̄ = 0 is an equilibrium point of the system. Consider a
function V : Rn → R such that V (x̄) = 0 and V (x) > 0 in a neighbourhood E of x̄.
If such function exist, then

• if V̇ (x) ≤ 0 for all x ∈ E,then x̄ is stable,

• if V̇ (x) < 0 for all x ∈ E \ {x̄} ,then x̄ is asymptotically stable,

• if V̇ (x) > 0 for all x ∈ E \ {x̄} ,then x̄ is unstable.

Theorem 3.5 shows that if there is a continuously differentiable positive definite func-
tion V (x) such that V̇ (x) is negative semi-definite, then the equilibrium point is
stable. In addition, if V̇ (x) is negative definite, the equilibrium point is asymptotic-
ally stable.

The function V is called a Lyapunov function when x̄ is stable. The surface
V (x) = c with c ∈ R+ is then called a Lyapunov surface or a level surface. Consider
the set

Ωc = {x ∈ Rn|V (x) ≤ c} (3.51)

whose border is a level surface. As illustrated by Figure 3.14, if V is a Lyapunov
function, one has V̇ (x) ≤ 0, so every trajectory entering in Ωc will remain in Ωc.
Moreover, on the border of Ωc, the vector field defined by f points inside Ωc. There-
fore, the set Ωc is included in the region of attraction and can be used to make an
inner approximation of the latter.

From a physical point of view, Lyapunov functions can be seen as a form of
energy the system initially has. This energy decreases over time, leading the systems
towards the equilibrium point, which is the point of lowest energy. While the energy
of a system can be a Lyapunov function, there are other forms of Lyapunov functions.

It is important to know that the Lyapunov functions are only a sufficient condition
for stability. When a Lyapunov is found, the equilibrium point is stable. However,
failure to find a Lyapunov function does not mean that the equilibrium point is
unstable.

There exist several methods to find good candidates for a Lyapunov function.
However, researchers are studying more and more complex systems with more vari-
ables and more elaborated nonlinear behaviours, making Lyapunov functions more
challenging to find. This is particularly the case of formation control where a lot of
time and effort is spent on finding these Lyapunov functions, as in [110].
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Figure 3.14: Lyapunov function and the level surface

Example 3.4. To illustrate a practical proof with a Lyapunov function, consider
the simple pendulum with quadratic friction, represented by the following differential
equation [

ẋ1

ẋ2

]
=

[
x2

− sin (x1)− |x2| · x2

]
(3.52)

where x1 is the angle of the pendulum, x2 is the angular speed. This system has an
equilibrium point at the origin. The mechanical energy of this system is given by

Em =
1

2
x2
2 + (1− cos (x1)) . (3.53)

Then, consider the function

V :R2 → R,

x 7→ 1

2
x2
2 + (1− cos (x1)) . (3.54)

One can verify that {
V (x) = 0 ifx ̸= 0,

V (x) > 0 else.
(3.55)

Moreover, the time derivative of V is given by

V̇ (x) = x2 · ẋ2 + sin (x1) · ẋ1,

= x2 · (− sin (x1)− |x2| · x2) + sin (x1) · x2,

= − |x2| · x2
2.

So, one can verify that for any x ∈ R2, V̇ (x) ≤ 0 and V̇ (x1, 0) = 0. Therefore,
the Function V is a Lyapunov function of the system for the stable equilibrium point
x̄ = 0. Note that V̇ (x) is only negative semi-definite, so one cannot deduce if the
equilibrium point is asymptotically stable). Figure 3.15 illustrate some trajectories
and some level surfaces.
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Figure 3.15: Illustration of Example 3.4. The trajectories xa (t) and xb (t) converge
to the equilibrium point x̄ = 0, following the vector field f (x). Some level surfaces
of V are represented. The level c increases when moving away from the equilibrium
point. The trajectory crosses the level surfaces in a decreasing order. the curves
V (x) = c of the Lyapunov function are all the contours of a Positive invariant inner
set.
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3.3.1.5 The continuous Lyapunov equation

In the case of a linear time-invariant system like

ẋ (t) = A · x (t) , (3.56)

Lyapunov functions can have a quadratic form like

V (x) = xTPx, (3.57)

with P ∈ S+
n . As presented by Theorem 3.6, if P is a solution of a Lyapunov equation,

then for all x ∈ R, one has

V̇ (x) = xTP ẋ+ ẋTPx

= xT
(
ATP + PA

)
x.

(3.59)
= −xTQx

< 0. (3.58)

As it will be presented in Section 4.3, ellipsoids are described by the same quadratic
form (3.57). Moreover, the level surface of such Lyapunov functions are ellipsoids.
Thus the Lyapunov equation (3.59) will become useful when studying stability with
ellipsoids.

Theorem 3.6. [44, Theorem 4.6]A matrix A is Hurwitz; that is Re (λi) < 0 for all
its eigenvalues of A if and only if for any Q ∈ S+

n there exists a P ∈ S+
n that satisfies

the Lyapunov equation

ATP + PA+Q = 0. (3.59)

Moreover, if A is Hurwitz, then P is the unique solution of (3.59).

3.3.2 Stability of discrete systems

The notion of Lyapunov stability can be extended for discrete-time systems as presen-
ted in [7]. Consider the nonlinear discrete-time system given by the recurrence map-
ping

mk+1 = h (mk) . (3.60)

A state m̄ is an equilibrium point of the system if h (m̄) = m̄. The point m̄ is also
called a fixed point of the function h. Again, assume that m̄ = 0, since one can
always apply a change of variable y = m − m̄ on the system. The definition of the
Lyapunov stability for discrete system is an extension of Definition 3.10.

Definition 3.11. Let m̄ = 0 be an equilibrium point for the system of equa-
tion (3.60). For this system, the equilibrium point is:
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• Stable, if for every ϵ > 0, there exists δ > 0 such that

∥m0∥ < δ ⇒ ∥mk∥ < ϵ,∀k ∈ N (3.61)

• Unstable, if it is not stable.

• Attractive, if there exists δ > 0 such that

∥m0∥ < δ ⇒ lim
k→∞

∥mk∥ = 0 (3.62)

• Asymptotically stable, if it is stable and attractive.

• Exponentially stable, if it is asymptotically stable and there exist α > 0, β > 0,
δ > 0 such that

∥m0∥ < δ ⇒ ∥mk∥ ≤ α∥m0∥e−βk,∀k ∈ N (3.63)

As in Section 3.3.1.2, the stability can be global or local depending on the size of the
region of attraction

Ωatt =
{
m0 ∈ Rn| lim

k→∞
hk (m0) = x̄

}
(3.64)

For, the linearising method, Theorem 3.4 is extended to Theorem 3.7.

Theorem 3.7. Consider the nonlinear discrete system

mk+1 = h (mk) ,

with the equilibrium m̄ = 0 and h : Rn → Rn. Let F = ∂h
∂m

(0). The equilibrium
point m̄ of the nonlinear discrete system is locally asymptotically stable if |λi| < 1
for all eigenvalues of F . In addition, if h is K-Lipschitz, then the system is locally
exponentially stable. The equilibrium point is unstable if |λi| > 1 for one or more of
the eigenvalues of F .

A matrix F with all the eigenvalues in absolute value smaller than 1 is called a
Schur matrix. Moreover, if h is Lipschitz, the system is locally exponentially stable.

Then, for Lyapunov function, Theorem 3.5 can be extended to Theorem 3.8.

Theorem 3.8. Consider the system of equation (3.60) with the equilibrium point
m̄ = 0. Consider a function V : Rn → R such that V (m̄) = 0 and V (m) > 0 in a
neighbourhood E of m̄. If such a function exists, then

• if V (h (m))− V (m) ≤ 0 for all m ∈ E, then m̄ is stable,

• if V (h (m))−V (m) < 0 for all m ∈ E \ {x̄} , then m̄ is asymptotically stable,

• if V (h (m))− V (m) > 0 for all m ∈ E \ {x̄} , then m̄ is unstable.
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Finally, there is also a discrete Lyapunov equation given by

F TPF + P +Q = 0, (3.65)

where P and Q are positive definite matrix. This equation is deduced from the
Lyapunov quadratic function V (m) = mTQm and the linear discrete mapping
mk+1 = h (mk) = F ·mk which give

V (h (m))− V (m) = mTF TQFm−mTQm

= mT
(
F TQF −Q

)
m

= −mTPm. (3.66)

Contraction Theory The stability of a discrete-time system can also be studied
with the contraction Theory [12] using the notion of contraction mapping given by
Definition 3.12

Definition 3.12. (Contraction mapping) Given a metric space (X , d), a mapping
h : X → X is a contraction if it is K-Lipschitz with a constant K < 1. In this case,
K is called the contraction factor of h.

Theorem 3.9. (Banach Contraction Theorem) Consider a metric space
(
X , d∥.∥

)
with X ⊆ Rn and consider the mapping h : X → X . If h is a contraction with a
contraction factor K, then

1) h has a unique fixed point m∗ in X .
2) the sequence {mk}k∈N generated by the iteration mk+1 = h (mk) converges to

m∗ for all initial condition m0 ∈ X .
3) the convergence is geometric, i.e. ∀k ∈ N, ∥mk −m∗∥ ≤ Kk ∥m0 −m∗∥.

Corollary 3.1. Consider the discrete-time system given by

mk+1 = h (mk) ,

0 = h (0) , (3.67)

with the mapping h : Rn → Rn and let X ⊆ Rn. If h is a contraction on X then the
system is exponentially stable on X , i.e. the exist α > 0, β > 0 such that

m0 ∈ X ⇒ ∥mk∥ ≤ α∥m0∥e−βk, ∀k ∈ N.

Proof. Since 0 is a fixed point of h, then from Theorem 3.9, for all m0 ∈ X and all
k ∈ N, one has

∥mk∥ ≤ Kk ∥m0∥
= eln(K)·k ∥m0∥ . (3.68)

So the discrete system is exponentially stable on X .

50



Figure 3.16: Positive invariant set S with respect to the discrete system zk+1 = h (zk)
and the continuous system ẋ = f (x)

3.3.3 Positive invariance

From Theorem 3.4, one can prove that the system is locally stable with a linearisation.
However, this theorem does not give any information on the size of the region of
attraction. When Lyapunov functions are difficult to find, the region of attraction
is often described with positive invariant (PI) sets [109, 6, 27, 52]. When a set is
positive invariant with respect to a system, the trajectory of the system may enter
but cannot escape this set. Finding positive invariant sets is a sufficient condition to
prove the stability of the system.

In addition, dynamical systems are often subject to a variety of perturbations that
affect the systems’ stability: the perturbed systems are often only locally stable. In
this case, the trajectory of the system will not converge to the equilibrium point, but
inside a neighbourhood from which the system cannot escape. For example, consider
an autonomous car that maintains a 10m distance with the car in from of it. If the
sensors of the car can measure the actual distance with a precision of ±1m, then
the car won’t be able to maintain the distance with a micro precision. Moreover, if
the speed of the car ahead is above the maximum speed of the autonomous car, that
latter will never be able to catch up. However, one can assume that when both cars
respect the speed limitation, the autonomous car will be able to maintain the distance
with a meter precision. So one can expect the car to stay in a neighbourhood of the
desired distance.

It is thus common to look for positive invariant sets. Some works like [52, 98]
propose to compute a precise description of the largest positive invariant set of a
function, but with a computation time that is sometimes significant. Some other
works propose to find a positive invariant set with little calculations [40].

In this thesis, the background about positive invariance is based on [6]. Positive
invariant sets are illustrated by Figure 3.16 and are defined by Definition 3.13 and
Definition 3.14.
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Definition 3.13. [6, Definition 4.1] Consider the continuous dynamical system

ẋ (t) = f (x (t)) (3.69)

with f : Rn → Rn. The set S ⊆ Rn is said to be positive invariant (PI) with respect
to the system if, for all x (0) ∈ S, the solution x (t) of system (3.69) verify x (t) ∈ S
for all t ≥ 0.

In other words, if the system is initialised in the positive invariant set S, it will
remain in it for an infinite amount of time. If the equilibrium point is inside this set,
then S is a stable neighbourhood of the equilibrium point. However, the existence of
positive invariant sets can’t tell if the system is asymptotically stable: the state may
wander in S without converging towards the equilibrium point.

Positive invariance can also be defined with respect to discrete dynamical systems

Definition 3.14. Consider the discrete dynamical system

xk+1 = h (xk) (3.70)

with h : Rn → Rn. The set S ⊆ Rn is said to be positive invariant (PI) with respect
to the discrete dynamical system (3.70) if for all x0 ∈ S, the sequence (xk)k∈N verify
xk ∈ S for all k ∈ N.

Positive invariant sets give less information about stability than Lyapunov func-
tions because they only describe the stability of the system at the sets’ border. How-
ever, for complex systems, these sets are often easier to find than Lyapunov functions.

The notion of positive invariance is related to Lyapunov theory. As presented in
Section 3.3.1.4, when a trajectory of the system crosses a level surface of a Lyapunov
equation, it enters a set Ωc and will remain in it, making this set positive invariant.
The region of attraction Ωatt is also positive invariant.

While it may not be possible to find an analytical expression for positive invariant
sets, there are different methods to describe them numerically. For example, one can
use Linear Matrix Inequality (LMI) or a sum of squares (SOS) [38]. There are also
Interval algorithms that enclose the border of the positive invariant sets [1, 52, 25,
90]. Unfortunately, these algorithmic methods are often exponentially complex with
respect to the dimension of the sets. Thus these methods are not effective for a high
dimensions problem.

For Hybrid systems, it can be hard to compute positive invariant sets. It is more
common to look for periodic invariant sets, also called p-invariant sets [40]. These
sets are periodic invariant meaning that the system’s trajectory is periodically in the
set. So the system can escape p-invariant sets, but at worst, it returns periodically
in it. Of course, a positive invariant set is also p-invariant.

Definition 3.15. The set A ⊆ Rn is periodic positive invariant (p-invariant) w.r.t.
to the continuous dynamical system (3.69) if there is a time t > 0 so that for all
x0 ∈ A, ϕ (t,x0) ∈ A.

P-invariant sets can also be defined for discrete dynamical systems.
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Definition 3.16. The set A ⊆ Rn is periodic positive invariant (p-invariant) w.r.t.
the discrete dynamical system (3.70) if there is a iteration k ∈ N∗ so that for all
x0 ∈ A, xk = fk (x0) ∈ A.

Example 3.5. Figures 3.17 and 3.15 represent some positive invariant sets for the
systems of the examples 3.1 and 3.4.

Figure 3.17: For the system of example 3.1, the state cannot escape the positive
invariant green rectangle.

3.4 Conclusion
As presented in this chapter, different types of nonlinear systems can describe a group
of robots. The stability of these systems is often proved by finding a Lyapunov func-
tion: one must propose a candidate function and formally prove that this candidate
is a Lyapunov function for the system. Although this method gives strong proof of
stability, finding a Lyapunov function is difficult for complex systems, with many
variables, a hybrid behaviour, and a lot of non-linearity, as in [111]. Moreover, while
the system can be proved locally stable by linearising the system, without a Lyapunov
function it is difficult to find positive invariant sets and to describe the region of at-
traction. When the stability is difficult to study with formal methods, an alternative
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is to compute positive invariant sets or Lyapunov functions with a guaranteed numer-
ical algorithm. This guarantee means that the solutions of the numerical operations
must contain the true mathematical solution. The next chapter will present several
numerical tools that have been used to study stability when Lyapunov functions are
difficult to find.
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Chapter 4

State of Art on numerical stability

4.1 Introduction
This chapter present several numerical tools that can be used for stability analysis.
These tools guarantees the result of their computation, so they can be used in a
mathematical proof. This guaranty comes form the use of interval algebra presented
in Section 4.2. Moreover, the numerical tools developed in this thesis are based one
the ellipsoids presented in Section 4.3, a guaranteed numerical method to propagate
ellipsoids presented in Section 4.4, and some guaranteed integration methods presen-
ted in Section 4.5.

4.2 Interval analysis
The study of dynamical systems is challenging when dealing with non-linearity, noise,
external perturbations and uncertainties. In order to overcome these challenges, it is
possible to describe linearisation errors and uncertainties as intervals.

With intervals, numerical computations can be guaranteed by computing an rig-
orous interval of the results. Therefore, these computations can be part of a math-
ematical proof. For example, interval computations were used to prove the existence
of the Lorenz attractor [107]. However, using interval adds pessimism in the compu-
tation. Computing with intervals require the use of an interval algebra, which is part
of interval analysis.

4.2.1 Background

Interval analysis is a branch of mathematics which was originally developed to solve
mathematical problem by enclosing sets of solutions[74, 39, 49]. This enclosure is
computed through an arithmetic for intervals, which is often carried out by computers.
In interval analysis, a real number x is represented by a pair of numbers a and b such
that a ≤ x ≤ b. Instead of using x to solve mathematical problems, operations are
carried out on a and b to enclose the round-off errors made by computers. Therefore,
interval analysis can be used in rigorous mathematical proof.
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Since the beginnings of interval analysis, interval arithmetic has been developed
for a variety of operations. In the context of this thesis, interval analysis will be used
in the computation of high-dimensional ellipsoids

4.2.2 Interval arithmetic

This section present the key concepts in interval arithmetic as well as the notations,
which will be used throughout this thesis. Further details on the concepts are provided
in [74, 39].

Definition 4.1. (Interval). An interval written [x] is a connected subset of R. The
set of all intervals is denoted IR.

The interval [x] is generally represented by a lower bound written x or lb ([x]) and
by an upper bound written x or ub ([x]). These bounds are defined by

x = lb ([x]) := sup {a ∈ R ∪ {−∞,∞} |∀x ∈ [x] , a ≤ x} , (4.1)
x = ub ([x]) := sup {b ∈ R ∪ {−∞,∞} |∀x ∈ [x] , x ≤ b} . (4.2)

With this definition, intervals can be opened if their bound are −∞ or ∞. The width
of a closed interval [x] is defined as

width ([x]) := x− x, (4.3)

and the middle of this interval is defined as

mid ([x]) =
x+ x

2
.

Example 4.1. Here are some example of intervals:

• [−2, 5],[0, π],[−∞, 1] are intervals,

• the empty set Ø is considered as an interval by convention,

• [1, 1] = {1} ≠ Ø is a degenerate interval,

• the width of [−2, 5] is width ([−2, 5]) = 7,

• the middle of [−2, 5] is mid ([−2, 5]) = 3
2
.

4.2.2.1 Operations on interval

Common set operations can be performed on intervals. Let [x] and [y] be two intervals
of R. Their intersection is defined by

[x] ∩ [y] := {z ∈ R|z ∈ [x] , z ∈ [y]} , (4.4)
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and can be computed by

[x] ∩ [y] =

{
Ø if x < y,[
max

(
x, y

)
,min (x, y)

]
else.

(4.5)

While their intersection is always an interval, their union may not. Thus, to make
intervals closed with respect to union, the interval hull can be used instead. The
interval hull is the smallest interval enclosing the union. It is is defined by

[x] ⊔ [y] = [[x] ∪ [y]] , (4.6)

and can be computed by

[x] ⊔ [y] :=
[
min

(
x, y

)
,max (x, y)

]
. (4.7)

Then, usual arithmetic operators can be defined over IR. Let ⋄ ∈ {+,−, ., /} , then

[x] ⋄ [y] := {x ⋄ y, x ∈ [x] , y ∈ [y]} . (4.8)

As for the intersection and the interval hull, these operations can be implemented
using interval bounds but special case must be taken regarding multiplication and
division or special operator like sin, cos, exp..., see [39].

Example 4.2. Here are some example of operations on intervals

• [−1, 2] ∩ [1, 5] = [1, 2]

• [−1, 0] ∩ [1, 5] = Ø

• [−1, 0] ⊔ [1, 5] = [−1, 5]

• [−1, 0] + [1, 5] = [0, 5]

• [−1, 0]− [1, 5] = [−6,−1]

• [−1, 0] · [1, 5] = [−5, 0]

• [7, 9] / [2, 5] =
[
7
5
, 9
2

]
• [1, 5] / [−1, 0] = [−∞,−1]

Note that some operation are not intuitive and so must be processed carefully.

57



4.2.2.2 Interval vectors and matrices

To study multi-variable problems, intervals can be stacked to form interval vectors
also called boxes.

Definition 4.2. (Box). An box written [x] is a connected subset of Rn defined by a
Cartesian product of closed intervals such that

[x] := [x1]× [x2]× . . .× [xn] (4.9)

where the interval [xi] is the projection of [x] into the ith axis. The set of all boxes
of Rn is denoted IRn.

The width of an closed box [x] is defined as

width ([x]) := max
1≤i≤n

width ([xi]) , (4.10)

and the middle of this box is a vector defined as

mid ([x]) := [mid (xi)]1≤i≤n . (4.11)

Note that a vector is a degenerate box. Then, boxes can be concatenated to form
interval matrices.

Definition 4.3. (Interval matrix). An (m× n)-dimensional interval matrix is a sub-
set of Rm×n that can be defined as the Cartesian product of mn closed intervals. The
interval matrix [A] can be written

[A] :=

 [a11] · · · [a1n]
...

...
[am1] · · · [amn]

 ,

= [a11]× [a12]× . . .× [amn] ,

where [aij] is the projection of [A] into the (i, j)th axis.

The middle of a closed interval matrix [A] is defined as

mid ([A]) :=

 mid ([a11]) · · · mid ([a1n])
...

...
mid ([am1]) · · · mid ([amn])

 . (4.12)

Moreover, the operations of Section 4.2.2.1 can be applied component-wise to boxes
and interval matrices.
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Figure 4.1: 2-dimensional box, inclusion function and minimal inclusion function

4.2.2.3 Inclusion functions

In the same way as classical operators, real function can also be extended to intervals.

Definition 4.4. (Inclusion function)[39, Section 2.4]. Consider the function f : Rn →
Rm. The interval function [f ] : IRn → IRm is an inclusion function for f if

∀ [x] ∈ IRn,f ([x]) ⊂ [f ] ([x]) (4.13)

where f ([x]) = {f(x)|x ∈ [x]} is the image of the interval [x] by the function f .

Figure 4.1 illustrates an inclusion function in R2. While [x] is a box, it is generally
not the case for f ([x]) as in this figure. An inclusion function returns an enclosure
of the image set f ([x]) in the form of an interval, a box or interval matrix. The
interest is to use operators on inclusion functions as in interval arithmetic. In practice,
[f ] ([x]) should be reasonably quickly evaluated but not too large. A large evaluation
is commonly called pessimistic. The inclusion function [f ] is is called minimal if for
all [x] ∈ IRn, [f ] ([x]) is the smallest box containing the set f ([x]). It is then denoted
by [f ([x])].

The main difficulty when using inclusion function is the wrapping effect. This
phenomenon appears when there are some point in [f ] ([x]) that have an inverse
image outside of [x]. This wrapping effect is a common cause of pessimism in interval
arithmetic. Note that minimal inclusion function introduces the least wrapping effect.

Example 4.3. The Figure 4.2 illustrates the wrapping effect with an iterative rota-
tion of the box around its centre by a π

4
rad angle. In this example, the function f is

defined by

f :R2 → R2

x 7→

[
1√
2

− 1√
2

1√
2

1√
2

]
· x. (4.14)

Starting form the box [x0], at each iteration k, the enclosure [xk] = [f ] ([xk−1]) is
computed. At each iteration, [xk] overestimate fk ([x0]) more and more leading to
an enclosure explosion after some steps. This example shows that the composition of
inclusion function can lead to bad overestimation.
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(a) Initial box (b) First iteration (c) Second iteration

(d) Third iteration (e) Fourth iteration

Figure 4.2: Illustration of the wrapping effect due to the composition of inclusion
functions
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(a) Centred form for [x] (b) Centred form for [x′]

Figure 4.3: Illustration of the centred form

4.2.2.4 Centred form

Some inclusion functions give better approximation of f ([x]). When f is nonlinear
and [x] is small, it is relevant to used a centred form, also called a centred inclusion
function.

Definition 4.5. (Centred form). Consider a differentiable function f : Rn → Rm.
The centred form [f c] of f is an inclusion function for f defined as

[f c] :IRn → IRm

[x] 7→ f (xm) +

[
∂f

∂x

]
([x]) · ([x]− xm) ,

with xm = mid ([x]) and where
[
∂f
∂x

]
is an inclusion function for ∂f

∂x
.

This inclusion function is deduced from the mean-value theorem which implies
that

∀x ∈ [x],∃z ∈ [x] ,f (x) = f (xm) +
∂f

∂x
(z) · (x− xm) , (4.15)

so that f ([x]) ⊆ [f c] ([x]). The Figure 4.3 illustrate the use of centred form on a
1-dimensional function.

In practice, the centre form results in little wrapping effect when the gradient of
the function f is small on [x], which usually happens when [x] is small enough, as in
this example. The centred from has a convergence of order 1 in the sense that

width ([f c] ([x]))

width (f ([x]))
→ 1

when width ([x]) tends to 0. In general, inclusion function don’t have this order 1
convergence. However, the centre form often results in more wrapping effect on wide
intervals.
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Figure 4.4: Zonotopes are polygons in 2 dimension and polyhedron in 3 dimensions.

4.3 Ellipsoids
As presented in Section 3.3.3, PI set can be an alternative to Lyapunov theory to
proof some stability for a dynamical system. There exists some numerical methods
to prove the existence of PI sets. These methods are usually designed for sets with
simple representations such that

• The result of the numerical method has little pessimism.

• The computational complexity is at worst polynomial.

Thus, in practice, numerical methods are developed based on three types of sets :
the boxes [9] , the ellipsoids and the zonotopes [40, 91, 31, 6]. If intervals can be
illustrated with a rectangular shape, zonotopes can be described by interval with
polygonal shape, like in Figure 4.4.

Boxes give a small computational complexity but a big pessimism. Thus, accord-
ing to the literature, a good compromise between these two constraints is archived
with zonotopes and ellipsoids. According to [1], zonotopes and ellipsoids give similar
pessimism and computational complexity with linear systems. Zonotopes can be less
pessimistic than the ellipsoids by increasing the number of sides of the zonotopes,
at the cost of more computations. Note that a fusion of ellipsoid and zonotopes has
been proposed by [47].

Ellipsoids have been used in a variety of approaches to study nonlinear systems.
They can be used for reachability analysis [48], stability analysis [58, 92] or state
estimation [1, 108]. For linear systems, the library Ellipsoidal Toolbox (Matlab) [50]
can be used for various ellipsoidal applications. However there is a lack of library for
nonlinear systems.

In this thesis, all methods are designed with ellipsoids. This choice was made
because ellipsoids are related to Lyapunov function, so perfectly fit for stability ana-
lysis. Thus, this section introduces the main mathematical tool of this thesis, the
Ellipsoids, which will be used in numerical methods.

62



4.3.1 Non-degenerate ellipsoids

Ellipsoids are introduced in [87, 95, 6] and are defined by symmetric positive definite
matrices. Let S+

n be the set of real symmetric positive definite matrix. For a matrix
Q ∈ Rn×n, Q ≻ 0 means Q is positive definite and Q ⪰ 0 means Q is semi-definite
positive. For each matrix Q ∈ S+

n , there exists a unique square root matrix P ∈ S+
n

such that Q = P 2. One can write P = Q
1
2 . Moreover, for all Q ∈ S+

n the Q-norm
is defined by

∀x ∈ Rn, ∥x∥Q :=
√
xTQx. (4.16)

This norm is associated with the scalar product

⟨x,y⟩Q := xTQy. (4.17)

Definition 4.6. A non-degenerate ellipsoid is a subset of Rn described by a unique
midpoint µ ∈ Rn, a unique shape matrix Γ ∈ S+

n and the quadratic form

E (µ,Γ ) := {x ∈ Rn| ∥x− µ∥Γ−2 ≤ 1} . (4.18)

Figure 4.5: Representation of a 2-dimensional ellipsoid E

As illustrated by Figure 4.5, a 2-dimensional ellipsoid is an ellipse. An ellipsoid
can also be written E with a midpoint µ and a shape matrix Γ such that

E = E (µ,Γ ) ,

(µ,Γ ) = E−1 (E ) . (4.19)

When µ = 0, the ellipsoid E is said to be centred. For the simplicity of the notation,
one may write

E (Γ ) = E (0,Γ ) . (4.20)
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The unit sphere is thus written E (In). The border of an ellipsoid E is written ∂E .
For all Γ ∈ S+

n , all non-null real scalar α ∈ R∗, and all invertible matrix A ∈ Rn×n,
one has

α · E (Γ ) = E (α · Γ ) , (4.21)

A · E (Γ ) = E
((

AΓ 2AT
) 1

2

)
. (4.22)

Ellipsoids can also be described as an affine transformation of the unit sphere, as
presented in Theorem 4.1 and illustrated in Figure 4.5. This affine description will
later be used to define degenerate ellipsoids.

Theorem 4.1. Let E be a non-degenerate ellipsoid of Rn with the midpoint µ ∈ Rn

and the shape matrix Γ ∈ S+
n , and let E (In) be the unit sphere. The ellipsoid E is

equal to

E = µ+ Γ · E (In) . (4.23)

Figure 4.5 also illustrates the semi-axis of the ellipsoid which are described by the
eigenvalues and the eigenvectors of Γ . The unitary eigenvectors {v1,v2, · · · ,vn} of
Γ gives the direction of the semi-axis. The length of the semi-axis is given by the
eigenvalues {λ1, λ2, · · · , λn} of Γ . The ith semi-axis of E (µ,Γ ) is written λi · vi.

4.3.2 Ellipsoids and Lyapunov equations

As presented in Section 3.3, with P ∈ S+
n , a quadratic function

V (x) = xTPx (4.24)

can be a Lyapunov function of a continuous-time or discrete-time dynamical system.
In this case, the level surface

Ωc = {x ∈ Rn|V (x) ≤ c} , (4.25)

with the level c > 0, is an ellipsoid. One has

Ωc = E (Γ ) ,

Γ =
√
c · P− 1

2 . (4.26)

Moreover, this level surface is positive invariant with respect to the system. Therefore,
finding a positive invariant ellipsoid for a linear dynamical system consists in solving
the corresponding Lyapunov equation, as presented by Theorem 4.2 and Theorem 4.3.

Theorem 4.2. [6, Section 4.4.2]Consider the linear discrete time-invariant dynam-
ical system

xk+1 = F · xk. (4.27)
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Let Q ∈ S+
n and let P ∈ S+

n be the solution of the discrete time Lyapunov equation

F TPF + P +Q = 0, (4.28)

Then, for all α > 0, the ellipsoid α · E
(
P− 1

2

)
is positive invariant with respect to the

system (4.27).

Theorem 4.3. [6, Section 4.4.1]Consider the linear continuous time-invariant dy-
namical system

ẋ = A · x. (4.29)

Let Q ∈ S+
n and let P ∈ S+

n be the solution of the continuous time Lyapunov equation

ATP + PA+Q = 0, (4.30)

Then, for all α > 0, the ellipsoid α · E
(
P− 1

2

)
is positive invariant with respect to the

system (4.29).

4.3.3 Inclusion of ellipsoids

For two ellipsoids E1 and E2, the inclusion and the strict inclusion are respectively
denoted by the symbols ⊆ and ⊂ such that

(E1 ⊂ E2) ⇔ (E1 ⊆ E2 and E1 ∩ ∂E2 = ∅) (4.31)

If two ellipsoids have the same midpoint, their mutual inclusion can be verified us-
ing Theorem 4.4. Inclusion is more complex to verify when ellipsoids have different
centres. Note that his case will not be studied in this thesis.

Theorem 4.4. Let E1 and E2 be two ellipsoids of Rn with the same midpoint µ ∈ Rn.
Consider the shapes matrices Γ 1 ∈ S+

n and Γ 2 ∈ S+
n such that E1 = E (µ,Γ 1) and

E2 = E (µ,Γ 2) . Then, one has

(E1 ⊆ E2) ⇔
(
Γ−2

1 − Γ−2
2 ⪰ 0

)
, (4.32)

(E1 ⊂ E2) ⇔
(
Γ−2

1 − Γ−2
2 ≻ 0

)
. (4.33)

Note that since Γ 1 and Γ 2 are invertible, one gets(
Γ−2

1 − Γ−2
2 ⪰ 0

)
⇔

(
Γ 2Γ

−2
1 Γ 2 − In ⪰ 0

)
⇔

(
In − Γ 1Γ

−2
2 Γ 1 ⪰ 0

)
(4.34)
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4.3.4 Orthogonal projection of ellipsoids on affine space

In this thesis, the stability will be analysed with high-dimensional ellipsoids. These
ellipsoids will be displayed on 2-dimensional images to give the reader an idea of
the ellipsoids’ shape. To do so, a list of 2-dimensional orthogonal projection will be
displayed. Consider the orthogonal matrix T =

[
t1 t2

]
∈ Rn×2 and the plane

At1,t2 :=
{
x ∈ Rn|∃t ∈ R2,x = T · t

}
, (4.35)

As presented in [87, Section 13], The projection of an ellipsoid E of Rn onto the affine
space Ai,j result in the ellipsoid

pAt1,t2
(E ) =

(
TT T

)
· E ,

= E
(
TT Tµ,

(
T TTΓ 2TT T

) 1
2

)
(4.36)

with (µ,Γ ) = E−1 (E ) and such that pAt1,t2
(E ) ⊂ A. Then, with a change of variable

y = T T ·x, one can display the projected ellipsoid pAt1,t2
(E ) in the frame (0, t1, t2), as

illustrated by Figure 4.6. In practice, the ellipsoids will be projected in the orthogonal
planes of the Cartesian base (0, ei, ej).

Figure 4.6: A 3-dimensional ellipsoid can be displayed with three 2-dimensional or-
thogonal projections with three orthogonal vectors t1, t2 and t3.

4.4 Guaranteed Propagation of ellipsoids
Several methods developed in this thesis will use the propagation of ellipsoids via non-
linear function. These approaches follow previous works such as [70, 86, 51] which
studied linear or linearised system. In these studies, the propagation of ellipsoids
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follow an affine arithmetic where stability problems are often equivalent to LMI con-
straints.

Given an initial ellipsoidal set E ⊂ Rn and the differential nonlinear mapping
h : Rn → Rn, the image set

h (E ) = {y ∈ Rn|∃x ∈ E ,y = h (x)} , (4.37)

must be evaluated. As illustrated by Figure 4.7, the result of this propagation will
likely be anything but an ellipsoid and will have no analytical expression. It may
even become non-convex. It is possible to compute a precise description of h (E ) with
splitting and sub-paving procedures [46, 52] but these methods have an exponential
complexity.

To have polynomial complexity, one can afford to approximate h (E ) with an outer
enclosure with a simple description, like an ellipsoid. One can therefore look for an
ellipsoid Eout ⊂ Rn such that

h (E ) ⊆ Eout, (4.38)

Moreover, Eout should be computed as small as possible with reasonable computation
time.

Figure 4.7: Propagation of a 2-dimensional non-degenerate ellipsoid via a nonlinear
mapping with the image of the propagation h (E ) and an outer enclosure of this
image Eout.

4.4.1 Propagation method

The outer ellipsoidal enclosure Eout can be computed using the method introduced
in [95]. The polynomial complexity of this method allows the study of high dimen-
sional mappings. This method, based on the centred form of h, keeps the order 1
of convergence and can thus give a good enclosure when E is small. This method
can also study mapping whose analytical expression is unknown, provided that the
Jacobian matrix of the mapping is enclosed in a known box. The main assumption of
this method is that the Jacobian matrix in invertible. The Theorem 4.5 behind this
method is illustrated by Figure 4.8.
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Figure 4.8: Illustration of Theorem 4.5

Theorem 4.5. [95, Theorem 1] Let E = E (µ,Γ ) be an non-degenerate ellipsoid of
Rn with µ ∈ Rn and Γ ∈ S+

n . Let h be a C1 mapping over Rn such that its Jacobian
matrix at the origin,

J =
∂h

∂x
(µ) , (4.39)

is invertible. Consider the point

µout = h (µ) , (4.40)

and the matrix

Γ out = (1 + ρ)
(
JΓ 2JT

) 1
2 ,

where the inflation gain ρ can expressed as

ρ = min
{
ρ ∈ R+|∀x̃ ∈ E (In) ,

∥∥∥b̃ (x̃)∥∥∥
2
≤ ρ

}
, (4.41)

with the function

b̃ :Rn 7→ Rn,

x̃ → Γ−1 · J−1 · (h (Γ · x̃+ µ)− µout)− x̃. (4.42)

Then, the ellipsoid Eout = E (µout,Γ out) is an outer enclosure of h (E ).

To show this theorem, a first approximation of the set h (E ) is made by linearizing
h at the point µ, which gives the following linear mapping

hl :Rn → Rn

x 7→ h (µ) + J · (x− µ) . (4.43)

68



The propagation of E by the linear mapping hl results in the ellipsoid

El = E (µout,Γ l)

= hl (E ) , (4.44)

with,

Γ l =
(
JΓ 2JT

) 1
2 . (4.45)

In practice, when E is a small ellipsoid, the shape of h (E ) is closed to El. Thus a
small inflation of El can result in a good outer-enclosure, as in [51, Theorem 4.1].
Therefore, we will look for an outer enclosure Eout = E (µout,Γ out) with

Γ out = (1 + ρ) · Γ l, (4.46)

while minimising the inflation gain ρ. To compute ρ, the ellipsoids are normalised by
the affine transformation y 7→ Γ−1 · J−1 · (y − µout) such that El becomes the unit
sphere E (In). With this normalisation, all sets have about a spherical shape. So, ρ
is the maximum radius of the set

b̃ (E (In)) = Γ−1 · J−1 · (h (E (µx,Γ x))− µout) . (4.47)

4.4.2 Implementation of the propagation method

A numerical implementation of the propagation method is also proposed in [95, Al-
gorithm 1], following Theorem 4.5. Given the function h, consider the propagation
operator Ph defined by

Ph (E ) := h (µ) + (1 + ρ) · J · (E − µ) , (4.48)

such that Eout = Ph (E ), with J = ∂h
∂x

(µ) and where the computation of ρ is detailed
in Algorithm 1. It should be noted that this algorithm is computationally tractable,
which is not common in interval algorithms, whose complexity if often exponential.
The operator Ph will simplify the notation in the following chapters.

This algorithm must compute an interval matrix [J ] that verifies

∂h

∂x
(E ) ⊆ [J ] . (4.49)

The method to compute [J ] depends on the nature of h. In [95, Algorithm 1], where
the analytical expression of ∂h

∂x
is known, [J ] is computed as

[J ] =

[
∂h

∂x

]
([E ]) (4.50)

where [E ] is the tightest axis-aligned box that enclose E , given by

[E ] = µ+ diag(∥Γ 1∥2 , ∥Γ 2∥2 , ..., ∥Γ n∥2) · [1]n (4.51)
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Algorithm 1 Outer enclosure implmentation
Inputs E
Outputs Ph (E )

1: (µ,Γ ) = E−1 (E )
2: J = ∂h

∂x
(µ) // can be an approximation

3: [J ] = EncloseJacobian (h,E ) // such that ∂h
∂x

(E ) ⊆ [J ]

4:
[
b̃
]
=

(
Γ−1 · J−1 · [J ] · Γ − In

)
· [1]n

5: ρ = sup
{∥∥∥[b̃]∥∥∥}

6: Ph (E ) = h (µ) + (1 + ρ) · J · (E − µ) ,

where Γ i is the ith line of Γ . To explain the computation of [E ], let x ∈ E . There
exist a point x̃ ∈ E (In) such that

x = µ+ Γ · x̃. (4.52)

So the ith component of x is described by

xi = µi + Γ i · x̃ (4.53)

where Γ i is the ith line of Γ . Knowing that ∥x̃∥ ≤ 1, the maximum value of the
scalar product Γ i · x̃ is ∥Γ i∥2. Thus, one deduces

xi ∈ µi + ∥Γ i∥2 · [−1, 1] . (4.54)

When the analytical expression of ∂h
∂x

is unknown, but h is the flow of a continuous
dynamical system, one can compute [J ] via a guaranteed integration of the variational
equation, as later presented in Section 4.5.2.

Then, using [J ], the algorithm compute a box
[
b̃
]

that encloses the set b̃ (E (In)),

as illustrated by Figure 4.9. The box
[
b̃
]

is computed by[
b̃
]
=

(
Γ−1 · J−1 · [J ] · Γ − In

)
· [1]n (4.55)

To explain the computation of
[
b̃
]
, let x̃ ∈ E (In). Since E (In) is a convex set, from

the mean value theorem, there is a point x̃∗ ∈ E (In) such that

b̃ (x̃) = b̃ (0) +
∂b̃

∂x̃
(x̃∗) · (x̃− 0)

=
∂b̃

∂x̃
(x̃∗) · x̃ (4.56)
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Then, from the differentiation of Equation (4.42), the Jacobian of b̃ can be expressed
as

∂b̃

∂x̃
(x̃) = Γ−1 · J−1 · ∂h

∂x
(Γ · x̃+ µ) · Γ − In,

= Γ−1 · J−1 · ∂h
∂x

(x) · Γ − In. (4.57)

with x = Γ · x̃+ µ ∈ E . Therefore, one has

b̃ (E (In)) ⊆
(
Γ−1 · J−1 · ∂h

∂x
(E ) · Γ − In

)
· E (In) , (4.58)

⊆
(
Γ−1 · J−1 · [J ] · Γ − In

)
· [1]n . (4.59)

Finally, the inflation gain ρ is overestimated and computed by

ρ = sup
{∥∥∥[b̃]∥∥∥}

= sup


√√√√ n∑

i=1

[
b̃i

]2 . (4.60)

Figure 4.9: Illustration of the computation of ρ in Algorithm 1

Example 4.4. This example illustrate the performances of the Algorithm 1
Consider the nonlinear mapping

h :R2 → R2,[
x1

x2

]
7→

[
x1 + dt · x2

x2 + dt · (− sin (x1)− 0.5 · x2
2)

]
(4.61)

with dt = 0.4. This mapping represent a discrete evolution of an nonlinear simple
pendulum with damping.
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Let us propagate the ellipsoids E1 = E (µ,Γ 1) and E2 = E (µ,Γ 2)with

µ =
[
2. 1.

]T
Γ 1 =

[
0.4 0
0 0.2

]
Γ 2 = 0.1 · Γ 1

using the Algorithm 1. The Figure 4.10 and 4.11 illustrate the result of this propaga-
tion. The wrapping effect is clearly visible for E1. However as E2 is smaller than E1

it results in less wrapping effect.

Figure 4.10: Propagation of ellipsoid E1 by the nonlinear mapping (4.61). The el-
lipsoid El,1 =

∂h
∂x

(µ) · E1 results from the linearised mapping. The ellipsoid Ph (E1) is
obtained by inflating El,1, so that all point xout are inside Ph (E1). Some 500 points
x are sampled in E1. Their image xout = h (x) is inside Ph (E1).
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Figure 4.11: Propagation of ellipsoid E2 by the nonlinear mapping (4.61). The ellips-
oid El,2 =

∂h
∂x

(µ) · E2 results from the linearised mapping. Then the ellipsoid Ph (E2)
is obtained by inflating El,2. Some 500 points x are Sampled in E2. Their image
xout = h (x) is inside Ph (E2).

In order to apply the method from this section, a challenging task is the compu-
tation of the interval matrix of the Jacobian

[J ] ⊇ ∂h

∂x
(E ) . (4.62)

When the analytical expression of h is known, this computation is trivial. But when
h is the flow of a nonlinear continuous-time dynamical equation, then one need to
use guaranteed integration algorithms to compute [J ].

4.5 Guaranteed integration
For several decades, some mathematical tools have been developed to create al-
gorithms which can perform the integration of differential equations in a guaranteed
manner. This means that the result of the algorithm rigorously contains all the reach-
able state of the predicted system [89]. This Section will present the mathematical
tools used for guaranteed integration in this thesis, as well as the associated C++
library which will be used.

The finding of guaranteed enclosure for the integration was already addressed in
the 60’s by Krückeberg and Moore [49, 72, 73]. They both proposed methods to solve
an IVP in a guaranteed way using axis-aligned boxes. But their main problem was
the presence of wrapping effect, which led to bloating effect after a few integration
steps. Since then, new algorithms have been developed to reduce the wrapping effect
to have a sharper enclosure. Moreover, ellipsoids and zonotopes have been considered
to replace axis-aligned boxes.
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Figure 4.12: Rigorous integration of an IVP with the initial condition [x0]

4.5.1 IVP guaranteed solvers

Consider the initial value problem described by{
ẋ (t) = f (x (t)) ,

x (0) ∈ [x0] ,
(4.63)

as presented in Section 3.2.1. Solving this IVP problem for a time T consist in evalu-
ating the set ϕT ([x0]) with the flow ϕT of the ODE. Since the analytical expression
of ϕ is generally unknown, ϕT ([x0]) must be evaluated with a guaranteed integration
of f .

An intuitive solution to integrate the differential inclusion would be to use boxes
and an Euler integration scheme with the following equation

[x] (t+ dt) = [x] (t) +

∫ t+dt

t

[f ] ([x] (τ)) dτ ,

[x] (0) = [x0] , (4.64)

such that ϕT ([x0]) ⊆ [x] (T ), as illustrated by Figure 4.12. To integrate [f ] ([x] (τ)),
one must find an enclosure [xg] of all the trajectories starting from [x] (t) and evolving
for a duration dt. This enclosure is called the global enclosure of the solution. Since,
there is no direct way to find this global enclosure, iterative methods are often used.
Once [xg] is known, the equation (4.64) becomes

[x] (t+ dt) = [x] (t) + [0, dt] · [f ] ([xg]) . (4.65)

This Euler integration method is simple and fast. However, depending on the studied
system, its result can be very pessimistic.

Thus, more advanced algorithms have been developed to give more precision in
the result. These guaranteed integration algorithms can be split into two groups:
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• Those based on the Taylor expansion method [26, 49, 122, 115]

• The ones based on the Hermite-Obreshkov method [78, 112, 67]

The application made in this thesis use only C++ libraries that use the Taylor ex-
pansion method.

4.5.2 Using the variational equation to compute the Jacobian
of the flow

As presented in Section 3.2.1.1, the Jacobian of a dynamical system’s flow, written Jϕ,
can be computed by integrating the variational equation. The variational equation
can be added to the ODE of the system to form the following IVP problem

ẋ (t) = f (x (t)) ,

J̇ϕ (t,x (0)) = df
dx0

(x (t)) · J̇ϕ (t,x (0)) ,

x (0) ∈ [x0] ,

Jϕ (0) = In.

(4.66)

Solving this IVP for a time T consist in computing [xT ], [JT ] such that{
x (T ) ∈ [xT ] ,

Jϕ (T,x (0)) ∈ [JT ] .
(4.67)

As a result {
ϕT ([x0]) ∈ [xT ] ,

Jϕ (T, [x0]) ∈ [JT ] .
(4.68)

In particular, if one choose [x0] = [E ], then the solution [JT ] of the IVP can be used
as the Jacobian of the flow

[JT ] = [Jϕ] (T, [E ]) , (4.69)

that is needed to perform the ellipsoidal propagation method presented in Section 4.4.

4.5.3 Presentation of the CAPD library

In this thesis, the library Computer Assisted Proof in Dynamic groups (CAPD) [41]
will be used to perform guaranteed integration. This Library was developed in the
1990’s by M. Mrozek to study chaotic dynamics in the Lorenz system [71]. Then
Taylor expansion method have been added on an ongoing basis. Their method was
initially a C0 integration based on logarithmic norm. Around 2000, it became a
C1-Lohner algorithm based on Taylor expansion method [122], before becoming a
Cr-Lohner algorithm around 2008 [43, 115]. Since then, other chaotic systems have
been studied such as the Rössler system or the Michelson system. More recently, this
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algorithm was enhanced with a Hermite-Obreshkov correction [112]. Here is a link to
the documentation of CAPD: https://capd.sourceforge.net/capdDynSys/ .

This library was chosen following the work of a previous thesis [8, 20] that used
CAPD in the robotic field. For a detailed presentation of the algorithm in CAPD,
see [8]. Note that there exist other libraries which can perform guaranteed integration,
such as VNODE-LP [25], DynIbex [15], Valencia-IVP [94] or COSY Infinity [5].

The use of CAPD is here relevant for the following reasons:

• The algorithms have polynomial complexity, which is adapted for high-dimen-
sional systems

• It has an implicit solver for variational equations [112]

• Their method can be used to compute Poincare mapping which could be used
to study hybrid systems in future research

Note that this library is designed for boxes and zonotopes but not for ellipsoids.
Nevertheless, to solve variational equation, ellipsoid are enclosed in zonotopes, which
creates some pessimism.

4.6 Conclusion
With the development of interval analysis, numerical computation can be guaranteed.
Thus, these computations can be used in a stability proof, when Lyapunov functions
are difficult to find. Moreover, several numerical method, such as the guaranteed
propagation of ellipsoid or the guaranteed integration are computationally tractable
and can therefore be used on a high-dimensional system such as a group of robots. To
reduce the pessimism of the computation, stability should be studied using ellipsoids
instead of boxes.

Building on the tools presented in this chapter, the following chapters will present
several new guaranteed numerical method to prove stability with ellipsoids. First
Chapter 5 will present a method for discrete-time systems. Then Chapter 6 will
use the discrete-time method to study continuous-time systems, by linearising them.
Chapter 7 will present numerical method with singular mappings and degenerate
ellipsoids. Finally, Chapter 8 will use the methods from Chapters 5, 6 and 7 to study
synchronous hybrid systems, which better describe a group of robots.
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Chapter 5

A guaranteed numerical method to
find Ellipsoidal domain of attraction
for nonlinear discrete-time system

5.1 Introduction
This chapter discusses the stability of discrete-time systems. Although a group of
robots is better described by a continuous-time system, which are studies in Chapter6,
the numerical methods for continuous systems will be based on the numerical methods
for discrete systems.

The previous chapter Chapter 3 presented how to use Lyapunov theory to prove
the stability of nonlinear discrete-time systems. However, finding a Lyapunov function
is difficult for complex high-dimensional systems, such as groups of robots.

Then Chapter 4 presented a numerical method to make guaranteed ellipsoidal
propagation. Although many interval analysis algorithms have exponential com-
plexity and are only designed for a small problem dimension, the guaranteed el-
lipsoidal propagation is computationally tractable. Thus, with this main advantage,
this method can be used on high-dimensional problems.

This chapter presents how this numerical tool can be used to prove the stability of
discrete-time systems, extending the results of [93]. In [93], the guaranteed ellipsoidal
propagation method is used to compute positive invariant ellipsoids for a discrete-time
system. This method first solves a discrete Lyapunov equation to find a candidate
ellipsoid that is likely positive invariant. From this ellipsoid, an ellipsoidal enclosure of
the reachable set is computed using the guaranteed propagation method, as illustrated
by Figure 5.1a. If this enclosure is strictly included in the initial ellipsoid, then the
ellipsoid is positive invariant with respect to the system. If the inclusion is not verified,
as illustrated by Figure 5.1b, the process can be repeated by shrinking the initial
ellipsoid, which reduces the pessimism caused by the non-linearity and makes the
inclusion more likely to be verified. Of course, if this ellipsoid is not positive invariant,
the inclusion cannot be verified, as illustrated by Figure 5.2. To our knowledge, this
is the first method that can make a guaranteed computation of a positive invariant
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ellipsoid for a high-dimensional system.

(a) Good inclusion (b) Failure of the numerical method

Figure 5.1: Illustration of the numerical method presented in this chapter.

Figure 5.2: Guaranteed propagation of an ellipsoid that is not positive invariant

However, [93] does not provide proof that the system is exponentially stable in
the positive invariant ellipsoid. Moreover, the choice of the candidate ellipsoid is not
efficient when there is rotation in the system’s mapping: the enclosure and the initial
ellipsoids have different axes which makes the ellipsoidal inclusion less likely to be
verified.

This chapter extends the result of [93] on two points:

1. The guaranteed ellipsoidal propagation can also prove that the discrete-time
system is exponentially stable in the positive invariant ellipsoid.

2. Another particular case of the Lyapunov equation is considered to improve the
chance of success of the algorithm, by selecting ellipsoids that keep their axis
with the propagation.

This chapter is organised as follows. Section 5.2 presents the stability problem con-
sidered in this chapter. Section 5.3 presents a key theorem to prove stability using
ellipsoidal propagation. Section 5.4 presents a method to find ellipsoids that are likely
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to be positive invariant. Section 5.5 present the numerical implementation of the sta-
bility analysis method described in the previous sections. Finally, Section 5.6 shows
an application of the method on a formation control problem with two ROVs.

5.2 Problem definition
In this Chapter, consider a nonlinear discrete-time system, introduced in Section 3.2.2
and described by the following recursive formula

mk+1 = h (mk) , (5.1)

where mk ∈ Rn is the state vector of the system at the time tk = k · T with k ∈ N
and T > 0 and where :

• the mapping h is C1 but its analytical expression is known.

• the system is represented such that the origin 0 of Rn is an equilibrium point,
with 0 = h (0).

• the system is assumed locally exponentially stable, so the Jacobian at the origin

J =
dh
dm

(0) (5.2)

is a Schur matrix.

Note that an extension of the stability analysis method to study continuous or hybrid
systems by discretising the system will be discussed in Section 5.5.

Since the system is high-dimensional, the computation of the domain of attraction

Ωatt =
{
m0 ∈ Rn| lim

k→∞
hk (m0) = 0

}
(5.3)

with a reasonable computation time is challenging. To evaluate the domain of attrac-
tion, the problem of this chapter consists in computing a positive invariant ellipsoid
E included in the domain of attraction (E ⊆ Ωatt) such that the system is locally
exponentially stable in E , i.e. there exist γ ∈ ]0, 1[ that verify

m0 ∈ E ⇒ ∥mk∥Γ−2 ≤ α ∥m0∥Γ−2 ek·ln γ,∀k ∈ N, (5.4)

with Γ = E−1 (E ). The problem is decomposed into two steps:

• Proving the exponential stability of the system in an ellipsoid E , as presented
in Section 5.3.

• Finding an ellipsoid E that is likely positive invariant, as presented in Sec-
tion 5.4.

79



5.3 Proof of the exponential stability
The exponential stability in E can be proved with Theorem 5.1, illustrated by Fig-
ure 5.3, and that relies on Lemma 5.1. The inclusion 5.1 can be numerically verified
as presented in Section 5.5.

Lemma 5.1. Consider the discrete system (5.1) with the propagation operator Ph.
For every real α ∈ ]0, 1] and every ellipsoid E , one has

Ph (α · E ) ⊆ α · Ph (E ). (5.5)

Proof. Consider the ellipsoid E and the matrix Γ = E−1 (E ). From Theorem 4.5, one
has

Ph (E ) = E (Γ out) , (5.6)

with the matrix

Γ out = (1 + ρ)
(
JTΓ 2J

) 1
2 ,

with the inflation gain

ρ = ub
(∥∥(Γ−1 · J−1 · [J ] · Γ − In

)
· [1n]

∥∥) , (5.7)

where the interval matrix [J ] verifies

dh

dm
(E ) ⊆ [J ] . (5.8)

Then let α ∈ ]0, 1]. One has α · E ⊂ E , so

dh

dm
(α · E ) ⊆ dh

dm
(E ) ,

⊆ [J ] . (5.9)

Therefore, at least Ph (α · E ) can be computed with [J ] such that

Ph (α · E ) = Ph (E (αΓ )) ,

= E (Γ out,α) . (5.10)

with the matrix

Γ out,α = (1 + ρα)
(
JT (αΓ )2 J

) 1
2 , (5.11)

where the inflation gain verifies

ρα ≤ ub
(∥∥((αΓ )−1 · J−1 · [J ] · (αΓ )− In

)
· [1n]

∥∥) ,
= ub

(∥∥(Γ−1 · J−1 · [J ] · Γ − In

)
· [1n]

∥∥)
= ρ. (5.12)
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Moreover, from (5.11), one has

Γ out,α =
α · (1 + ρα)

(1 + ρ)
·
(
(1 + ρ)

(
JTΓ 2J

) 1
2

)
, (5.13)

= α · γ · Γ out, (5.14)

with

γ =
(1 + ρα)

(1 + ρ)
. (5.15)

Thus, one obtains

Ph (α · E ) = E (Γ out,α) ,

= E (α · γ · Γ out) ,

= α · γ · E (Γ out) ,

= α · γ · Ph (E ) . (5.16)

Then, from (5.12) one gets γ ∈ ]0, 1]. Therefore

Ph (α · E ) ⊆ α · Ph (E ) . (5.17)

Figure 5.3: Illustration of Theorem 5.1

Theorem 5.1. Consider the discrete system (5.1) with the propagation operator Ph.
If there exists an ellipsoid E such that

Ph (E ) ⊂ E , (5.18)

then E is positive invariant with respect to the system (5.1) and the system (5.1) is
locally exponentially stable on the ellipsoid E .

In Theorem 5.1, the positive invariance is deduced from the fact that h (E ) ⊆
Ph (E ). The exponential stability is deduced from the Lemma 5.1 as following
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Proof. Consider an ellipsoid E such that

Ph (E ) ⊂ E , (5.19)

and let Γ = E−1 (E ). So, from (4.31) one has

Ph (E ) ⊆ E and Ph (E ) ∩ ∂E = ∅. (5.20)

Moreover, the ellipsoid Ph (E ) is a compact set, so the norm ∥.∥Γ−2 is bounded above
Ph (E ) and attains its supremum γ ∈ R+. By absurd, γ ≥ 1 contradicts (5.20).
Moreover, since the mapping h is not singular, one has Ph (E ) ̸= {0} and so γ > 0.

Therefore, one gets γ ∈ ]0, 1[ and

Ph (E ) ⊂ γ · E . (5.21)

Then, let m ∈ E and α = ∥m∥Γ−2 . So m ∈ α · E . Moreover, from Lemma 5.1, one
has

Ph (α · E ) ⊆ α · Ph (E ). (5.22)

In addition, from Theorem 4.5, one gets

h (α · E ) ⊆ ·Ph (α · E ). (5.23)

Thus, from (5.21), (5.22) and (5.23), one deduces

h (α · E ) ⊂ γ · α · E . (5.24)

As a consequence

∥h (m)∥Γ−2 < γ · α = γ · ∥m0∥Γ−2 . (5.25)

So h is a pseudocontraction. As a result, from Theorem 3.9, the discrete system is
exponentially stable in E .

5.4 Axis-aligned Lyapunov equation
To verify the requirement of Theorem 5.1, one must find an ellipsoid E that verifies

Ph (E ) ⊂ E , (5.26)

In practice, Theorem 5.2 can find an ellipsoid that will likely verify (5.26).

Theorem 5.2. (Axis-aligned discrete Lyapunov equation) Let J ∈ Rn×n be a Schur
matrix and let P ∈ S+

n be the unique solution to the discrete Lyapunov equation

JTPJ − P = −Q, (5.27)

with Q = JTJ . Let Γ = P− 1
2 and Γ J =

(
JΓ 2JT

) 1
2 . Then Γ and Γ J have the same

eigenvectors and E (Γ J) ⊂ E (Γ ).
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Proof. From (3.65), E (Γ ) is positive invariant with respect to the linear mapping

mk+1 = J ·mk. (5.28)

Thus

J · E (Γ ) ⊂E (Γ ) . (5.29)

Then, one has

Γ−2
J = J−TΓ−2J−1. (5.30)

Thus, from (5.27), one has

JTPJ − P = −JTJ ,

P − J−TPJ−1 = −In

Γ−2 − J−TΓ−2J−1 = −In

Γ−2 − Γ−2
J = −In (5.31)

Therefore, Γ−2 and Γ−2
J have the same eigenvectors. So Γ−2 and Γ−2

J also have the
same eigenvector.

Example 5.1. For example, consider the linear discrete-time system

mk+1 = mk + dt ·
[

m2,k

−m1,k −m2,k

]
= J ·mk, (5.32)

with

J =

[
1. dt
−dt 1− dt

]
. (5.33)

With dt = 0.5, and by writing the solution of the equation (3.65)

P =

[
a b
b c

]
, (5.34)

the equation (3.65) can be rewritten
−b+ 0.25c+ 1.25 = 0,

0.5a− 0.75b− 0.25c+ 0.25 = 0,

0.25a+ 0.5b− 0.75c+ 0.5 = 0.

(5.35)

The solution of this system is
(
a = 59

13
, b = 28

13
, c = 47

13

)
. As a result, the matrices of

the ellipsoid E (Γ ) and E (Γ J) are

Γ = P− 1
2

≃
[

0.53 −0.16
−0.16 0.60

]
, (5.36)
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Figure 5.4: Axis aligned ellipsoid for the system (5.32) with dt = 0.5.

and

Γ J =
(
JΓ 2JT

) 1
2

≃
[

0.46 −0.11
−0.11 0.50

]
. (5.37)

As illustrated by Figure 5.4, these two ellipsoids have the same axis.

5.5 Implementation

Algorithm 2 Computation of the positive invariant ellipsoid E (Γ ) in which the
system is exponentially stable
Inputs h,αmax

Outputs res, Γ
1: J = dh

dm (0)
2: P = solve_discrete_Lyapunov(J)
3: α = 0
4: res = False
5: while α < αmax and res = False do
6: Γ = 10−α · P− 1

2

7: Γ out = E−1 (Ph (E (Γ )))
8: res = is_definite_positive

(
Γ−2

out − Γ−2
)

9: α = α + 1
10: end while

The Algorithm 2 is proposed to solve the problem introduced in Section 5.2,
using the results from Section 5.3 and Section 5.4. This algorithm is computationally
tractable. This algorithm is described by the following steps:
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1. The algorithm solves the discrete Lyapunov equation (5.27) to compute the
matrix P ∈ S+

n . This solution can be approximated. To solve this equation,
the recommended method depends on the dimension of the problem. With 4.4a
small dimension, one can use matrix factorisation as in [34]. In high dimensions,
one can use a bilinear transformation as described in [28].

2. The algorithm computes Ph (E ) = E (Γ out) with the ellipsoid E = E
(
10−αP− 1

2

)
with a scale factor α > 0.

3. The algorithm tests the inclusion (5.18) with the ellipsoid. If the inclusion is
not verified, the ellipsoid is shrunk with higher values of α, until the inclusion
is verified. From Theorem 4.4, one has

(Ph (E (Γ )) ⊂ E (Γ )) ⇔
(
Γ−2

out − Γ−2 > 0
)

(5.38)

This inclusion can be numerically guaranteed by making a Cholesky decompos-
ition of Γ−2

out − Γ−2. If the decomposition succeed, then Γ−2
out − Γ−2 is positive

definite. However, if the decomposition fails, the algorithm is not able to con-
clude on the inclusion.

To compute the enclosure of the Jacobian on the ellipsoid [J ] from the analytical
expression of dh

dm
, one can deduce an analytical expression of an inclusion function[

dh
dm

]
by substituting variables with intervals. One can then compute [J ] as

[J ] =

[
dh

dm

]
([E ]) , (5.39)

with the box

[E ] = diag(∥Γ 1∥2 , ∥Γ 2∥2 , ..., ∥Γ n∥2) · [1n] , (5.40)

that enclose the ellipsoid, where Γ i is the ith column of Γ .
In the algorithm, the most complex operations are matrix inversion and matrix

square root which have polynomial complexity. In practice, Algorithm 2 is implemen-
ted in Python language with the libraries Numpy for matrix operations, Codac for
Interval analysis and Scipy for solving Lyapunov equations.

Discussion The success of the algorithm depends on the opposite effect of J and
ρ: while J contracts the ellipsoid, the pessimism in ρ increase the size of Ph (E ). To
succeed, ρ must be small enough. Its value is affected by

• The dimension of the problem. To recall, in the algorithm 1 that computes
Ph (E ), ρ is computed as the upper bound of the norm-2 of a box

ρ = sup
{∥∥∥[b̃]∥∥∥} ,

= sup


√√√√ n∑

i=1

[
b̃i

]2 . (5.41)
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The norm-2 is computed by summing the square of the interval of each dimen-
sion of

[
b̃
]
. Thus the pessimism on each dimension piles up on the computation

of ρ.

• The non-linearity of the system. Whereas a linear system gives no pessimism
(ρ = 0) the more nonlinear the system, the bigger the gain.

• The size of the ellipsoid E . The algorithm progressively reduces the size of E
which reduces the nonlinear pessimism. Thus, Ph (E ) converge towards h (E )
and ρ converge towards 0.

Therefore, in theory, the algorithm always succeeds when E is small enough. However,
in practice, numerical computations cannot be made on infinitely small ellipsoids and
the value of ρ often converges towards a non-null value. So after some attempts with
different values of α, one can consider that the method has failed. A good conditioning
of the system could help to reduce pessimism and avoid failure.

Then, although the analytical expression of h is know in this chapter, the al-
gorithm can also be used when h is the flow of a continuous-time dynamical system.
Indeed, the algorithm only needs to approximate the Jacobian matrix J and enclose
the Jacobian matrix on the ellipsoid with the interval matrix [J ]. This can be done
using the guaranteed integration of the variational equation, presented in Chapter 3.
As a result, the algorithm could be used to study continuous or hybrid systems, by
discretising the system. the resulting evolution functions h may have no analyt-
ical expressions it is possible to evaluate their Jacobian matrices. This idea will be
investigated in the following chapters.

5.6 Application
This section presents two applications of the Algorithm 2. It is first applied on a 2d
pendulum. Then, the algorithm is used on a formation control with two robots. This
second example is also used in the following chapters.

5.6.1 2d simple pendulum example

Figure 5.5: Simple pendulum
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In this example, consider a simple pendulum illustrated by Figure 5.5, with the angle
θ (t). Assume that the continuous-time dynamics of the pendulum is

θ̈ (t) = − sin (θ (t))− θ̇ (t) , (5.42)

where θ̇ is the angular speed and θ̈ is the angular acceleration. Although the motion
of the pendulum is described by a continuous-time dynamical system, this system can
be discretised by an Euler scheme into the auxiliary discrete-time nonlinear system

mk+1 = h (mk)

= mk + dt ·
[

m2,k

− sin (m1,k)−m2,k

]
, (5.43)

with the discretisation time dt > 0 and where m1,k = θ (k · dt), m2,k = θ̇ (k · dt).
Assume that dt = 0.5 s. In this example, the stability of 5.43 is analysed with Al-
gorithm 2. As later presented in Chapter 6, the stability of the continuous-time
system can be deduced from the stability of the auxiliary discrete-time system.

Note that, in this example, one can also prove the stability of this system by
finding a Lyapunov function as in example 3.4. However, for the group of robots
which are in high dimensions, Lyapunov functions are difficult to find.

5.6.1.1 Application of Algorithm 2

Choosing the ellipsoidal candidate. The algorithm starts by computing the
Jacobian matrix at the origin

J =
dh
dm

(0)

=

[
1 dt

−dt 1− dt

]
. (5.44)

Then, the algorithm solves the axis-aligned discrete Lyapunov equation

JTPJ − P = −JTJ . (5.45)

From example 5.1, the solution is

P =

[
59
13

28
13

28
13

47
13

]
.

Then, with α = 0, the first candidate ellipsoid is E (Γ ) with

Γ = P− 1
2

≃
[

0.53 −0.16
−0.16 0.60

]
. (5.46)
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Propagation of the ellipsoid. Then, using Algorithm 1, the ellipsoid E (Γ ) is
propagated with the mapping h and the outer enclosure E (Γ out) = Ph (E (Γ )) is
computed. For this propagation, the box

[E ] =
[
∥Γ 1∥2 0

0 ∥Γ 2∥2

]
· [1]n ,

≃
[
[−0.56, 0.56]
[−0.62, 0.62]

]
, (5.47)

that enclose E (Γ ) is computed with Γ 1 and Γ 2 the lines of Γ . As illustrated on
Figure 5.6, one has E (Γ ) ⊆ [E ]. Then the Jacobian of h is evaluated on E with the
interval matrix

[J ] =

[
dh
dm

]
([E ])

=

[
[1] [dt]

−dt · cos ([E ]1) [1− dt]

]
≃

[
[1] [0.5]

[−0.5,−0.42] [0.5]

]
, (5.48)

where [E ]1 is the first interval of [E ] and such that dh
dm (E) ⊆ [J ]. In the next step,

the box [
b̃
]
=

(
Γ−1 · J−1 · [J ] · Γ − In

)
· [1]n

≃
[
[−0.033, 0.033]
[−0.11, 0.11]

]
(5.49)

is computed, to obtain the inflation gain

ρ = sup
{∥∥∥[b̃]∥∥∥}

≃ 0.11, (5.50)

to get the shape matrix of the outer enclosure

Γ out = (1 + ρ)
(
JΓ 2JT

) 1
2

≃
[

0.51 −0.12
−0.12 0.56

]
. (5.51)

Inclusion of the ellipsoids. Then, the algorithm tests the inclusion E (Γ out) ⊂
E (Γ ) by computing

M = Γ−2
out − Γ−2,

≃
[
−0.05 −0.4
−0.4 0.12

]
.

88



However, M is not positive invariant, therefore the inclusion is not verified, as illus-
trated by Figure 5.6.

Figure 5.6: The propagated ellipsoid E (Γ out) not included in the candidate E (Γ ).
The algorithm 2 continues with a smaller candidate.

Propagation and inclusion with a smaller candidate. To reduce the pessim-
ism, the algorithm then test the ellipsoid E

(
Γ

′
)

with

Γ
′
= 10−α · P− 1

2

≃
[

0.16 −0.051
−0.051 0.19

]
,

with α = 1. It computes the propagated ellipsoid E
(
Γ

′

out

)
= Ph

(
E
(
Γ

′
))

with

Γ
′

out =
(
1 + ρ

′
)(

JΓ
′2JT

) 1
2

≃
[

0.15 −0.034
−0.034 0.16

]
, (5.52)

with a smaller inflation gain

ρ
′ ≃ 0.011. (5.53)

Then, the ellipsoid

M
′
= Γ

′−2
out − Γ

′−2

≃
[

8.7 −0.48
−0.48 8.9

]
, (5.54)

is verified positive invariant with a Cholesky decomposition. Thus E
(
Γ

′

out

)
⊂ E

(
Γ

′
)

is verified, as illustrated by Figure 5.7. Therefore, the result of the algorithm is the
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ellipsoid E
(
Γ

′
)

that verifies Ph

(
E
(
Γ

′
))

⊂ E
(
Γ

′
)
. As a result, from Theorem 5.1,

E
(
Γ

′
)

is positive invariant with respect to the system and the system is locally

exponentially stable on the ellipsoid E
(
Γ

′
)
.

Figure 5.7: The propagated ellipsoid E
(
Γ

′

out

)
is included in the candidate E

(
Γ

′
)
.

The algorithm 2 succeeds.

5.6.2 Formation control with two ROVs

In this example, two ROVs are controlled with a virtual structure approach to reach
an equilateral triangular formation, as illustrated in Figure 5.8. One vertex of the
triangle is fixed and serves as the reference point. The two other vertices are the
desired position of the ROVs. As a result, the triangle can pivot around the reference
point. This degree of freedom is not controlled. This formation can be useful when
the ROVs must inspect a structure or patrol around the pivot point. Moreover, if a
human operator takes control of one robot, the other one will follow it.

In this system, the source of non-linearity comes from a change in the coordinate
reference. The formation is defined in polar coordinates. However, the position-
tracking controller of the robot is designed in Cartesian coordinates, as is often the
case in practice.

The blue robot is called Inky, and the red robot is called Blinky. These are the
names of the real robots used in Chapter 9. Their name is a reference to the Pac-Man
video game.

In this chapter, the system is modelled by a discrete-time linear system. This
system is obtained by an Euler discretisation of the real continuous-time dynamics
of the robots. This discretisation will be useful in the application of Chapter 6 to
compute a positive invariant ellipsoid. Moreover, the following chapters will consider
other types of models with continuous-time behaviours.
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Figure 5.8: Equilateral triangular formation with Inky (blue) and Blinky (red). The
pivot point is fixed on Earth.

5.6.2.1 Mathematical description of the system

As illustrated by Figure 5.9, the polar horizontal coordinates of the ROVs are written

(db,k, ϕb,k) ∈ R2(for Inky),
(dr,k, ϕr,k) ∈ R2(for Blinky),

and their polar speed is written

(vb,k, wb,k) ∈ R2(for Inky),
(vr,k, wr,k) ∈ R2(for Blinky).

Note that db,k is a distance, vb,k is a speed, ϕb,k is an angle and wb,k is an angular
velocity around the origin. The motion robots are described by the recursive formula

db,k+1 = db,k + T · vb,k,
dr,k+1 = dr,k + T · vr,k,
ϕb,k+1 = ϕb,k + T · wb,k,

ϕr,k+1 = ϕr,k + T · wr,k,

vb,k+1 = vb,k + T · u1,k,

vr,k+1 = vr,k + T · u2,k,

wb,k+1 = wb,k + T · u3,k

db,k
,

wr,k+1 = wr,k + T · u4,k

dr,k
.

(5.55)

with a time step T > 0 and where (u1,k, u2,k, u3,k, u4,k) ∈ R4 are the controlled accel-
eration inputs of the system. This equation of motion has a singularity when db,k = 0
or when dr,k = 0. The singular points are avoided during the stability analysis, as
they are not part of the ellipsoids. Then, as illustrated by Figure 5.9, the desired
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Figure 5.9: Definition of the desired formation

positions of the robot are (
d∗, ϕk −

π

6

)T

(for Inky), (5.56)(
d∗, ϕk +

π

6

)T

(for Blinky), (5.57)

with the desired distance d∗ > 0 and where the orientation of the triangle ϕk is given
by

ϕk =
ϕb,k + ϕr,k

2
. (5.58)

The robots track their desired position with the following saturated proportional
derivative controller

u1,k = s · arctan (kp,d · (d∗ − db,k)− kd,d · vb,k) ,
u2,k = s · arctan (kp,d · (d∗ − dr,k)− kd,d · vr,k) ,

u3,k = s · arctan
(
kp,ϕ ·

(
ϕk −

π

6
− ϕb,k

)
− kd,ϕ · wb,k

)
,

u4,k = s · arctan
(
kp,ϕ ·

(
ϕk +

π

6
− ϕr,k

)
− kd,ϕ · wr,k

)
, (5.59)

with the saturation amplitude s > 0 and the controller gains (kp,d, kp,ϕ, kd,d, kd,ϕ) >
0 . Finally, to describe the full system, consider the global state vector mk =
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(mi,k)i∈J1:6K ∈ R6 with

m1,k = db,k − d∗

m2,k = dr,k − d∗

m3,k = ϕr,k − ϕb,k −
π

3
m4,k = vb,k

m5,k = vr,k

m6,k = wb,k

m7,k = wr,k (5.60)

The evolution of the global state vector is given by the mapping

mk+1 = h (mk) ,

0 = h (0) , (5.61)

with

h (mk) =



m1,k + T ·m4,k

m2,k + T ·m5,k

m3,k + T · (m7,k −m6,k)
m4,k + sT · arctan (−kp,d ·m1,k − kd,d ·m4,k)
m5,k + sT · arctan (−kp,d ·m2,k − kd,d ·m5,k)

m6,k +
sT

m1,k+d∗
arctan

(
kp,ϕ
2
m3,k − kd,ϕ ·m6,k

)
m7,k +

sT
m2,k+d∗

arctan
(
−kp,ϕ

2
m3,k − kd,ϕ ·m7,k

)


. (5.62)

The computation of h (mk) is detailed in Appendix 10. Moreover, by differentiating
h, the Jacobian matrix of this evolution function is

dh

dm
(m) =



1 0 0 T 0 0 0
0 1 0 0 T 0 0
0 0 1 0 0 −T T
J4,1 0 0 J4,4 0 0 0
0 J5,2 0 0 J5,5 0 0
J6,1 0 J6,3 0 0 J6,6 0
0 J7,2 J7,3 0 0 0 J7,7


(5.63)

where the expression of the Ji,j are detailed in Appendix 10. Thus, the matrix
J = dh

dm
(0) can be computed with (5.63). The inclusion function

[
dh
dm

]
is also deduced

from the analytical expression (5.63).

5.6.2.2 Stability analysis

The values of the parameters are detailed in Table 5.1. With these values, the eigen-
values of J are all in the unit circle so that J is a Schur matrix. So, from Theorem 3.8,
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the system is asymptotically stable at the origin. However, because of the control-
ler saturation and the singularity in the evolution function, the system is likely not
globally asymptotically stable.

Then the Algorithm 2 results in a 7-dimensional ellipsoid E that verifies

Ph (E ) ⊂ E . (5.64)

Thus, from Theorem 5.1, E is positive invariant with respect to the system and the
system is locally exponentially stable on the ellipsoid E .

A high-dimensional inclusion is not easily represented on a 2-dimensional paper.
Nevertheless, using orthogonal projections, Figure 5.10 illustrates the ellipsoids E and
Ph (E ) and their inclusion. On this figure, one can see that the ellipsoids have the
same semi-axis, as explained in Section 5.4.

Moreover, the ellipsoid Ph (E ) is just slightly smaller than E , even if the value of
the inflation gain was about ρ ≃ 0.009. This can be explained, by the fact that the
norm of the eigenvalues of J are in the interval [0.85, 0.96] an thus close to 1. Thus,
the inclusion (5.64) can only be verified with little pessimistic inflation. Moreover,
the inclusion (5.64) was not verified at the first iteration of α which shows that one
has to study smaller ellipsoids.

Parameter value unit
T 0.1 s
s 10 m.s−2

kp,d 0.1 m−1

kd,d 0.1 s.m−1

kp,ϕ 0.2 rad−1

kd,ϕ 0.7 s.rad−1

d∗ 5 m

Table 5.1: Parameters of the system
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Figure 5.10: Representation of the 7-dimensional ellipsoids E (red) and Ph (E ) (green)
with orthogonal projections on the 2-dimensional planes (0, xi, xj) with i < j.

5.6.2.3 Simulation of the system

To illustrate the positive invariance of the computed ellipsoid E , the system is sim-
ulated with a random initial state m0 ∈ E . The result of this simulation is shown
illustrated by Figure 5.11. At each step of the simulation, mk ∈ E is verified. As
demonstrated by the previous section, one can observe that every state variable con-
verges to zero.

95



Figure 5.11: Simulation of the state mk with a period T and a simulation time
tk = k · T , with the parameters of Table 5.1.

5.7 Conclusion
This chapter presents a numerical method to compute a positive invariant ellipsoid
with respect to a high-dimensional nonlinear discrete-time dynamical system such
that the system is exponentially stable in the ellipsoid. To our knowledge, this is
the first guaranteed numerical method that can compute an ellipsoidal domain of
attraction for a high-dimensional nonlinear system. This method can also be used
when the analytical expression of the evolution function of the discrete system is
unknown, as long as one can provide a function that encloses the values of the Jacobian
matrix. Moreover, the computations are guaranteed by interval analysis.

Therefore, This method can be applied to high-dimensional problems, where Lya-
punov functions are difficult to find. In the following chapters, this method will be
adapted to study continuous and hybrid nonlinear systems.

Moreover, the method assumes that the mapping of the systems is non-singular,
which is the case for discrete-time systems most of the time. The singular case is
discussed in Chapter 7.

The results of this chapter have been submitted to IEEE Transactions on Auto-
matic Control [63].
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Chapter 6

A guaranteed numerical method to
find ellipsoidal domain of attraction
for nonlinear continuous-time system

6.1 Introduction
Chapter 5 presented a numerical method to find a positive invariant ellipsoid in which
a discrete nonlinear system is exponentially stable. As robots are also composed of
continuous dynamics, the method must be adapted to continuous-time systems. This
adaptation can be presented in two points

The first method of Chapter 5 can be applied to a discretisation of the continuous
system. As explained in Section 5.5, the Jacobian matrix of the discretised mapping
can be evaluated with a guaranteed integration of the variational equation. This
chapter shows that if the discretised system is proved exponentially stable in an
ellipsoid E with this method, then the continuous system is also exponentially stable
in E .

Second, while this approach proves that E is positive invariant with respect to
the discretised system, it only proves that E is p-invariant (or periodic invariant)
with respect to the continuous system, as illustrated by Figure 6.1, where the state
comes back periodically inside the ellipsoid of origin. Therefore, this chapter also
presents an alternative method to prove that E is positive invariant with respect to
the continuous system. This method consist in propagating E with an Euler scheme.

As in Chapter 3.2.2, these new methods are based on the guaranteed propagation
of ellipsoids. Thus they are computationally tractable and can be used on high
dimensional systems. To our knowledge, these are the first guaranteed numerical
methods that can compute an ellipsoidal domain of attraction for a high-dimensional
continuous-time nonlinear system.

This chapter is organised as follows. Section 6.2 presents the stability problem
considered in this chapter. Section 6.3 shows a method to find a positive invariant
ellipsoid for a continuous system using ellipsoidal propagation with an Euler Scheme.
Section 6.4 presents how the exponential stability of the continuous system is deduced
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Figure 6.1: Example of a p-invariant ellipsoid E , where the state x follows a flow
ϕ. The ellipsoid E is positive invariant with respect to the discretised system
x ((k + 1) · t1) = ϕt1 (x (k · t1)). However, the state may escape the ellipsoid between
the discrete times k · t1.

from the stability of the discretised system. Section 6.5 present an adaptation of
Algorithm 2 from Chapter 5 to continuous systems. Finally, Section 6.6 shows an
application of the method on a continuous version of the formation control problem
of Section 5.2.

6.2 Problem definition
In this Chapter, consider a continuous nonlinear dynamical system described by the
following ODE

ẋ (t) = f (x (t)) , (6.1)

where t ∈ R represents the time, f : Rn → Rn is a K−Lipschitz nonlinear function
and x (t) ∈ Rn represents the state of the robot at the time t. Assume that the
analytical expression of f is known. The system is represented such that the origin 0
of Rn is an equilibrium point, f (0) = 0. The system is assumed locally exponentially
stable, so the Jacobian at the origin

A =
df
dx

(0) (6.2)

has eigenvalues with only strictly negative real parts.
For continuous systems, the Nagumo theorem (Theorem 6.1) gives a general cri-

terion for the positive invariance of ellipsoids.

Theorem 6.1. [6, Section 4.4.1] The ellipsoid E is PI w.r.t. (6.1) if and only if

∀x0 ∈ ∂E , ⟨x0,f (x0)⟩Γ−2 ≤ 0, (6.3)

with Γ = E−1 (E ).
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Remark 6.1. Sketch of a proof. Behind (6.3), there is the quadratic positive function

V :Rn → Rn,

x0 7→ ∥x0∥Γ−2 , (6.4)

whose time derivative is

V̇ (x (t)) = 2 ⟨x (t) ,f (x (t))⟩Γ−2 . (6.5)

and which acts like a Lyapunov function on the border of the ellipsoids ∂E . From
the ellipsoid Definition 4.6, one has

E = {x0 ∈ Rn|V (x0) ≤ 1} , (6.6)
∂E = {x0 ∈ Rn|V (x0) = 1} . (6.7)

So a trajectory x (t) stays in E if and only if V̇ (x (t)) < 0 when x (t) ∈ ∂E . However,
V̇ must not necessarily be negative inside the ellipsoid.

In other words, the ellipsoid is positive invariant if and only if on the border of the
ellipsoid, the vector f (x) points inside of the ellipsoid or is tangent to the ellipsoid,
as illustrated by Figure 6.2.

Figure 6.2: Illustration of the Nagumo Theorem for 2-dimensional ellipsoids. The
vector field f (x) prohibit the state trajectory x (t) from escaping the ellipsoid.

As in Section 5.2, the problem in this chapter consists in computing a positive
invariant ellipsoid E included in the domain of attraction such that the system is
locally exponentially stable in E , i.e. there exist γ ∈ ]0, 1[ that verify

x (t0) ∈ E ⇒ ∥x (t)∥Γ−2 ≤ α ∥x (t0)∥Γ−2 et·ln γ,∀t ∈ R+. (6.8)

with Γ = E−1 (E ). In this chapter, the problem of the positive invariance and the
exponential stability are separated. Thus the problem is decomposed into two steps:

• Finding a positive invariant ellipsoid E , as presented in Section 6.3.

• Proving that the system is exponentially stable in the positive invariant ellipsoid
E , as presented in Section 6.4.
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6.3 Finding a positive invariant ellipsoid propaga-
tion

To test the inequality (6.3) of the Nagumo Theorem 6.2, there already exist some
numerical methods such as the SIVIA algorithm [39]. Unfortunately, these methods
have exponential complexity. Thus, to have a polynomial complexity, the inequality
can be verified with Theorem 6.2.

Theorem 6.2. Let E be a non-degenerate ellipsoid of Rn. If there is a δ > 0 so that
E is PI w.r.t. the discrete system

xk+1 =xk + δ · f (xk) , (6.9)

then E is also PI with respect to the continuous dynamical system (6.1).

Proof. Let Γ = E−1 (E ), assume that E is PI w.r.t. the discrete system(6.9) with
δ > 0 and let x0 ∈ ∂E . So, at the first iteration of the discrete system, the point

x1 = x0 + δ · f (x0) (6.10)

is in E . Therefore, from the definition of non-degenerate ellipsoids, one deduces that

∥x1∥Γ−2 ≤ 1

⇔⟨x1,x1⟩Γ−2 ≤ 1. (6.11)

Moreover, one has

⟨x1,x1⟩Γ−2 = ⟨x0 + δ · f (x0) ,x0 + δ · f (x0)⟩Γ−2

= ⟨x0,x0⟩Γ−2 + 2δ ⟨x0,f (x0)⟩Γ−2 + δ2 ⟨f (x0) ,f (x0)⟩Γ−2

= ∥x0∥2Γ−2 + 2δ ⟨x0,f (x0)⟩Γ−2 + δ2 ∥f (x0)∥2Γ−2 . (6.12)

Furthermore, since x0 ∈ ∂E , one gets ∥x0∥2Γ−2 = 1. As a result, one obtains

2δ ⟨x0,f (x0)⟩Γ−2 + δ2 ∥f (x0)∥2Γ−2 ≤ 0

⇔ ⟨x0,f (x0)⟩Γ−2 ≤ −δ

2
∥f (x0)∥2Γ−2

⇒ ⟨x0,f (x0)⟩Γ−2 ≤ 0.

Therefore, by Theorem 6.1, E is PI w.r.t. (6.1).

This theorem considers a discretisation of the continuous dynamical system (6.1)
by an Euler method with a time step δ > 0. This discrete system (6.9) can be called
an Euler auxiliary system. As illustrated by Figure 6.3, if E is positive invariant with
respect the discrete system (6.9), then for all x0 ∈ ∂E , one has x1 ∈ E . As a result,
the vector f (x0) points inside E . So the Nagumo Theorem is verified. Therefore E
is also PI w.r.t. the continuous dynamical system (6.1).
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Figure 6.3: Intuition with an Euler method

Note that the reciprocity may not be verified if δ is too big. Even if f (x0)
points inside the ellipsoid, δ · f (x0) may pierce through the ellipsoid and x1 may
be outside the ellipsoid. Additional results on Euler auxiliary systems are presented
in [6, Appendix A.1.].

The method of Chapter 5 can be used to verify that E is positive invariant with re-
spect to the discrete system (6.9). The axis-aligned Lyapunov equation of Section 5.4
can be used to chose the ellipsoid E with the Jacobian matrix

J = In + δ · df
dt

(0) . (6.13)

6.4 Deducing the exponential stability
In Section 6.3, the continuous system is discretised via an Euler scheme. To prove the
exponential stability of the system, this section now considers the exact discretisation
of the system

x (tk+1) = ϕT (x (tk)) (6.14)

with the flow mapping ϕT for a time T > 0. As presented in Theorem 6.3, if the
discretised system is exponentially stable in an ellipsoid E , then the continuous system
is also exponentially stable in E .

Theorem 6.3. Consider a continuous time nonlinear dynamical system described by
the following equations

ẋ (t) = f (x (t)) ,

0 = f (0) , (6.15)
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where f : Rn → Rn is a K-Lipschitz differentiable nonlinear function with K > 0.
Let T > 0 and for all k ∈ N consider the time tk = k · T and the discrete-time state
vector

xk = x (tk) , (6.16)

whose evolution is described by

xk+1 = ϕt (xk) , (6.17)

where ϕt is the flow function of the dynamical system. Let E be an ellipsoid of
Rn. If the discrete system (6.17) is exponentially stable in E , then the dynamical
system (6.15) is also locally exponentially stable in E .

Proof. Consider the solution x of the continuous system (6.15) and let Γ = E−1 (E ).
From (5.4), since the discrete system is exponentially stable in E , then there exist
γ ∈ ]0, 1[ such that

x (0) ∈ E ⇒ ∥x (tk)∥Γ−2 ≤ α ∥x (0)∥Γ−2 ek·ln γ,∀k ∈ N, (6.18)

Moreover, from Theorem 3.3, since f is K-Lipschitz, then for all t ∈ [tk, tk+1] one
gets

∥x (t)∥Γ−2 ≤ ∥xk∥Γ−2 eK(t−tk). (6.19)

Let k ∈ N and t ∈ [tk, tk+1]. From (6.18) and (6.19), one obtains

∥x (t)∥Γ−2 ≤ α ∥x0∥Γ−2 eK(t−tk)+k ln γ. (6.20)

Then, with ∆t = t− tk ∈ [0, T ], one has

K (t− tk) + k ln γ = K (t− tk) + tk ·
ln γ

T
,

= K ·∆t+ (t−∆t)
ln γ

T
,

=

(
K − ln γ

T

)
∆t+ t · ln γ

T
,

<

(
K − ln γ

T

)
T + t · ln γ

T
. (6.21)

Thus, one deduces

∥x (t)∥Γ−2 ≤ α
′ ∥x0∥Γ−2 et·ln γ, (6.22)

with α
′
= αe(K+ ln γ

T )T > 0 and γ
′
= γ

1
T ∈ ]0, 1[. Therefore, according to (6.8), the

continuous system is exponentially stable in E .
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Figure 6.4: Exponential convergence of the continuous state x (t)

In 1-dimension, this theorem is illustrated by Figure 6.4. Since f is K−Lipschitz,
the slope of the trajectory of the system is bounded between two times tk. Since the
trajectory contracts at discrete times, the trajectory is forced to converge toward the
origin.

In the Theorem 6.3, the discretised system can be verified exponentially stable in
E using the method from Chapter 5. Since the analytical expression of the discrete
mapping ϕt is unknown, the Jacobian of ϕt must be evaluated with a guaranteed
integration of the variational equation, as presented in Chapter 3.

Moreover, Theorem 6.3 proves that E is positive invariant with respect to the
discretised system, but there is no guarantee that E is also positive invariant with
the continuous system. This is why a different discretisation was used in Section 6.3.

6.5 Implementation
The Algorithm 3 is proposed to solve the problem introduced in Section 6.2, using
the results from Section 6.3 and Section 6.4. This algorithm is the adaptation of
Algorithm 2 for continuous systems. It is also computationally tractable. In this
algorithm, two ellipsoidal propagation are made, one for each discretisation of the
continuous system. As Algorithm 2, this algorithm has polynomial complexity.

Discussion
There is no automatic selection for the discretisation time δ. Several attempts

may be required to tune δ.
With a small values of δ, the mappings hEuler and ϕδ are similar, and so are

PhEuler (E (Γ )) and Pϕδ
(E (Γ )). But if δ is too small, then the pessimism in the

computation of the ellipsoid compensates for the contraction of the mappings. So the
algorithm is not able to conclude.

With a high values of δ, the ellipsoid E (Γ ) contracts significantly. However, the
pessimism in the computation of the Jacobian matrix of ϕδ increases. Moreover, if δ
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Algorithm 3
Inputs f ,αmax,δ
Outputs res, Γ
A = df

dx (0)
J = In + δ ·A
P = solve_discrete_Lyapunov(J)
α = 1
res = False
while α < αmax and res = False:

Γ = 10−α · P− 1
2

Γ Euler = E−1 (PhEuler (E (Γ ))) // with hEuler : x → x+ δ · f (x)
Γ ϕ = E−1

(
Pϕδ

(E (Γ ))
)

res = is_definite_positive
(
Γ−2

Euler − Γ−2
)

and is_definite_positive
(
Γ−2

ϕ − Γ−2
)

α = α + 1
Computation of the positive invariant ellipsoid E (Γ ) in which the continuous system
is exponentially stable

is too big, then the discrete system xk+1 = hEuler (xk) becomes unstable.
When the system is barely stable, it can be challenging to find an ellipsoid that is

positive invariant with respect to the two discrete systems. In this case, one can use
different time steps or different ellipsoid candidate for the two discretised systems,
thus separating the two problems.

6.6 Application
In this section, the stability analysis of a continuous system is illustrated with a
continuous version of the application example of Section 5.6 from Chapter 5. To recall,
two ROVs are controlled with a virtual structure approach to reach an equilateral
triangular formation. While this system was represented as a discrete-time system in
Section 5.6, it is now modelled as a continuous-time system.

6.6.1 Mathematical description of the system

As illustrated by Figure 6.5 the ROVs Inky and Blinky are described using polar
coordinates. The position and speed of the robots are continuous-time variables. the
polar horizontal coordinates of the ROVs are written

(db, ϕb) ∈ R2(for Inky),
(dr, ϕr) ∈ R2(for Blinky).

104



Figure 6.5: Definition of the continuous desired formation

The motion robots is described by the following ODE
d̈b (t) = u1 (t) ,

d̈r (t) = u2 (t) ,

ϕ̈b (t) = u3(t)
db(t)

,

ϕ̈r (t) = u4(t)
dr(t)

,

(6.23)

where (u1, u2, u3, u4) ∈ R4 are the continuous-time acceleration inputs of the system.
As in Section 5.6, there is a singularity when db (t) = 0 or dr (t) = 0 which will
be avoided in the stability analysis. Then, as illustrated by Figure 6.5, the desired
positions of the robot are now(

d∗, ϕ (t)− π

6

)T

(for Inky), (6.24)(
d∗, ϕ (t) +

π

6

)T

(for Blinky), (6.25)

with the desired distance d∗ > 0 and where the orientation of the triangle ϕ (t) is
given by

ϕ (t) =
ϕb (t) + ϕr (t)

2
. (6.26)
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The robots track their desired position with the following saturated proportional
derivative controller

u1 (t) = s · arctan
(
kp,d · (d∗ − db (t))− kd,d · ḋb (t)

)
,

u2 (t) = s · arctan
(
kp,d · (d∗ − dr (t))− kd,d · ḋr (t)

)
,

u3 (t) = s · arctan
(
kp,ϕ ·

(
ϕ (t)− π

6
− ϕb (t)

)
− kd,ϕ · ϕ̇b (t)

)
,

u4 (t) = s · arctan
(
kp,ϕ ·

(
ϕ (t) +

π

6
− ϕr (t)

)
− kd,ϕ · ϕ̇r (t)

)
, (6.27)

which is the continuous counterpart of the controller in Section 5.6, with the sat-
uration amplitude s > 0 and the controller gains (kp,d, kp,ϕ, kd,d, kd,ϕ) > 0. Fi-
nally, to describe the full system, consider the global continuous-time state vector
x = (xi)i∈J1:6K ∈ R6 with

x1 = db − d∗

x2 = dr − d∗

x3 = ϕr − ϕb −
π

3

x4 = ḋb

x5 = ḋr

x6 = ϕ̇b

x7 = ϕ̇r (6.28)

The evolution of the global state vector is given by the ODE

ẋ (t) = f (x (t)) ,

0 = f (0) , (6.29)

with

f (x) =



x4

x5

(x7 − x6)
s · arctan (−kp,d · x1 − kd,d · x4)
s · arctan (−kp,d · x2 − kd,d · x5)

s
x1+d∗

arctan
(

kp,ϕ
2
x3 − kd,ϕ · x6

)
s

x2+d∗
arctan

(
−kp,ϕ

2
x3 − kd,ϕ · x7

)


. (6.30)

6.6.2 Finding a positive invariant ellipsoid with the Nagumo
Theorem

The parameter values are the same as in Chapter 5, given by table 5.1. To find a
PI ellipsoid, the system (6.29) is discretised with a time step δ > 0 to obtain the

106



following discrete-time system

xk+1 = h (xk) ,

= xk + δ · f (xk) , (6.31)

with δ = 0.1s, which is the exact system that was studied in Section 5.6. So a positive
invariant ellipsoid E with respect to the discretised system is already computed. Thus,
according to Theorem 6.2, the same ellipsoid E is also positive invariant with respect
to the continuous-time system (6.29).

6.6.3 Proving the local exponential stability

To prove the local exponential stability, consider the following discrete system

xk+1 = ϕδ (xk) (6.32)

where ϕδ is the flow function of the dynamical system (6.29) for a time δ = 0.1 s.
Compared to the Euler discretisation (6.31), there is no approximation in (6.32).

However, the analytical expression of ϕt is unknown. So the enclosure of the Jac-
obian of ϕδ must be computed by solving the variational equation with guaranteed
integration, as presented in Chapter 1.

Nevertheless, since the time step is small, the two discrete systems (6.31) and (6.32)
are close. So the ellipsoid E that is positive invariant with respect to the discrete
system (6.31) will likely be positive invariant with respect to the exact discrete sys-
tem (6.32).

Thus, with the Algorithm 2, the ellipsoid Pϕδ
(E ) is computed and the inclusion

Pϕt (E ) ⊂ E is verified, as illustrated by Figure 6.6. Note that the Figure 6.6 is
visually similar to Figure 5.10 that shows Ph (E ) ⊂ E .

As a result, E is positive invariant with respect to the discrete system (6.32).
Therefore, using Theorem 6.3, the continuous system is exponentially stable in E .

6.7 Conclusion
This chapter presents a numerical method to compute a positive invariant ellipsoid
with respect to a high-dimensional nonlinear continuous-time dynamical system such
that the system is exponentially stable in the ellipsoid. This method is an adaptation
of the method from Chapter 5 for continuous systems. To our knowledge, it is the first
guaranteed numerical method that can compute an ellipsoidal domain of attraction
for a high-dimensional continuous-time nonlinear system. For continuous systems,
the proof of positive invariance and exponential stability are separated via the study
of two different discretised systems.

Moreover, the method assumes that the mapping of the systems is non-singular,
which is the case for continuous-time systems most of the time. However, Chapter 8,
which adapts the method to synchronous hybrid systems, deals with singular map-
pings. Thus, the adaptation of the method to singular mappings is first discussed in
Chapter 7.
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Figure 6.6: Representation of the 7-dimensional ellipsoids E (red) and Pϕt (E ) (green)
with orthogonal projections on the 2-dimensional planes (0, xi, xj) with i < j.
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The results of this chapter have been published in the Automatica journal [62].
In the following chapters, this method will be adapted to study hybrid nonlinear
systems.
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Chapter 7

Propagation of Degenerate ellipsoids

7.1 Introduction
Chapter 6 presented a new numerical method to compute positive invariant ellipsoid
for continuous-time systems. To study the formation control of a group of robots,
this method must be adapted to synchronous hybrid systems, which is the topic of
Chapter 8.

The current chapter tackles an issue that must be solved before adapting the
stability analysis to synchronous hybrid systems. The numerical method of Chapter 6
uses the guaranteed ellipsoidal propagation method presented in Chapter 4. This
method can propagate an ellipsoid with a non-signular mapping. However, with
hybrid systems, the ellipsoids are often propagated with singular mappings. With a
singular mapping, an ellipsoid can be flattened, making it a degenerate ellipsoid. So,
this chapter extends the guaranteed ellipsoidal propagation to the singular case and
the degenerate ellipsoids. The method is extended using an eigenvalue decomposition
of the shape matrix and the addition of new non-zero eigenvalues when necessary.

The chapter is organised as follows. Section 7.2 presents the specificity of degener-
ate ellipsoids. Section 7.3 introduces the generalisation of the guaranteed ellipsoidal
propagation. Section 7.4 presents the algorithmic implementation of the generalised
method. Finally, Section 7.5 shows some results obtained with singular mappings.

7.1.1 Singular mapping in hybrid system

Hybrid systems can have singular mappings with discrete-time measurements, event
triggering or shock effects. A common example of singular mapping is the isobath
rebound. An isobath is a contour line of constant depth. As illustrated by Figure 7.1,
consider an underwater robot moving in a straight line. This robot can measure its
distance to the seabed, so it can detect an isobath crossing. Assume that the robot
must turn back when it reaches the isobath defined by x2 = sin (x1), as illustrated
in the figure. Depending on its initial position, the robot does not reach the isobath
at the same time, or at the same position. Given an ellipsoid of initial positions
E ⊂ R− × [−1, 1] where does the robot cross the isobath?
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To enclose the crossing positions, one can propagate the initial ellipsoid with the
mapping

g :R− × [−1, 1] →
[
−π

2
,
π

2

]
× [−1, 1][

x1

x2

]
7→

[
arcsin (x2)

x2

]
, (7.1)

which is a projection on the isobath. However, this mapping is singular because its
Jacobian matrix, given by

∂g

∂x
(x) =

[
0 1√

1−x2
2

0 1

]
, (7.2)

has a null eigenvalues. So the guaranteed propagation method cannot be used with
the mapping h. However, the crossing positions could be enclosed by a ellipsoid like
Eout. In this context, this chapter proposes to extend the guaranteed propagation of
ellipsoids to singular mappings like g to compute an enclosing ellipsoid like Eout.

Figure 7.1: Isobath crossing. The projection mapping g is singular. How to compute
an enclosing ellipsoid Eout such that g (E ) ⊆ Eout ?

7.2 Degenerate ellipsoids
Degenerate ellipsoids are ellipsoids with a non-invertible shape matrix, such that the
ellipsoids are flat in some directions, as presented in [4] and illustrated by Figure 7.2.
Unlike non-degenerate ellipsoids, they can’t be described by a quadratic form. How-
ever, they can be described by an affine form, with a positive semi-definite symmetric
matrix. Definition 7.1 proposes a general definition of ellipsoids to include degenerate
ellipsoids. With this definition, the ellipsoid is degenerate when Γ is non-invertible
and non-degenerate when Γ is definite positive.
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Figure 7.2: Illustration of a 2 dimensional degenerate ellipsoid. The ellipsoid is flat
in the direction of the eigenvector v2.

Definition 7.1. (General definition of ellipsoids) An ellipsoid is a subset of Rn de-
scribed by a unique midpoint µ ∈ Rn and a unique symmetric positive semi-definite
matrix Γ ∈ Sn such that

E (µ,Γ ) := µ+ Γ · E (In) (7.3)

The same notation will be used for non-degenerate and degenerate ellipsoids,
namely E , E (µ,Γ ) and E (Γ ). When necessary the ellipsoid will be specified de-
generate or not. A degenerate ellipsoid E is flat, so it has an empty interior and it is
equal to its border ∂E = E .

Some properties hold for degenerate ellipsoids. For all Γ ∈ Sn, all non-null real
scalar α ∈ R∗, and all invertible matrix A ∈ Rn×n, one has

α · E (Γ ) = E (α · Γ ) , (7.4)

A · E (Γ ) = E
((

AΓ 2AT
) 1

2

)
. (7.5)

The semi-axis of degenerate ellipsoids is also described by the eigenvalues and the
eigenvectors of Γ . The eigenvectors associated with null eigenvalues indicate the
direction where the ellipsoid is flat, as illustrated by Figure 7.2.

Eigenvalue decomposition The eigenvalues decomposition of Γ ∈ Sn, used in
this chapter, is given by

Γ = UDUT (7.6)

where U ∈ Rn×n is the orthonormal matrix whose columns are the eigenvectors of
Γ and where D ∈ Rn×n is the diagonal matrix whose diagonal elements are the
eigenvalues.

Whereas Γ has no inverse when the ellipsoid is degenerate, it has a pseudo-inverse
Γ+ equal to

Γ+ = UD+UT (7.7)

where D+, the pseudo inverse of D is formed by replacing every non-zero diagonal
element with its inverse.
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Inclusion with degenerate ellipsoid The inclusion of degenerate ellipsoids can-
not be tested with Theorem 4.5 because it inverses the shape matrices. However, for
two ellipsoids E1 and E2, if E2 is non-degenerate, the inclusions E1 ⊆ E2 and E1 ⊂ E2

can be tested with Theorem 7.1. If E2 is degenerate, the strict inclusion is not relev-
ant because E2 has an empty interior. Moreover, when E2 is degenerate the inclusion
E1 ⊆ E2 is hard to verify numerically because one has to prove that E1 is flat in the
same directions as E2.
Theorem 7.1. Let E1 be an ellipsoid of Rn and let E2 be a non-degenerate ellipsoid
of Rn such that E1 and E2 have the same midpoint µ ∈ Rn. Consider the shapes
matrices Γ 1 ∈ Sn and Γ 2 ∈ S+

n such that E1 = E (µ,Γ 1) and E2 = E (µ,Γ 2).Then,
one has

(E1 ⊆ E2) ⇔
(
In − Γ 1Γ

−2
2 Γ 1 ⪰ 0

)
, (7.8)

(E1 ⊂ E2) ⇔
(
In − Γ 1Γ

−2
2 Γ 1 ≻ 0

)
. (7.9)

Proof. Sketch of a proof. Let e ∈ Rn such that ∥e∥2 = 1. Let x = Γ 1 · e ∈ ∂E1. The
key idea is that

1− ∥x∥Γ−2
2

= 1− ∥Γ 1 · e∥Γ−2
2

= eTe− eT
(
Γ 1Γ

−2
2 Γ 1

)
e,

= eT
(
In − Γ 1Γ

−2
2 Γ 1

)
e, (7.10)

and

x ∈ E2 ⇔ ∥x∥Γ−2
2

≤ 1, (7.11)

from which (7.8) and (7.9) are deduced.

7.3 General propagation method
This section presents a generalisation of the guaranteed ellipsoidal propagation me-
thod presented in Section 4.5 from Chapter 3, to apply it to degenerate ellipsoid and
singular mappings. As in Chapter 3, consider the following differentiable nonlinear
mapping

y = h (x) ,h : Rn → Rn (7.12)

and the ellipsoid E of Rn. The image set

h (E ) = {y ∈ Rn|∃x ∈ E ,y = h (x)} , (7.13)

must be evaluated. Compared to Chapter 3 the ellipsoid E is not assumed non-
degenerate and h is not assumed non-singular. To evaluate h (E ), and outer enclosing
ellipsoid Eout of Rn is computed such that

h (E ) ⊆ Eout. (7.14)

The ellipsoid Eout can also be degenerate. The ellipsoid Eout is computed with The-
orem 7.2, the generalisation of Theorem 4.5. To introduce this new theorem, some
preliminary ideas are given in Section 7.3.1. The theorem is then presented in Sec-
tion 7.3.2.
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7.3.1 Preliminary ideas

To recall, the propagation method presented in Chapter 3 consists in inflating the
ellipsoid obtained by linearising h, as illustrated by Figure 7.3. Given the initial
ellipsoid E = E (µ,Γ ), and the Jacobian matrix

J =
∂h

∂x
(µ) ,

one can obtain the ellipsoid El = E (µout,Γ l) with

µout = h (µ) , (7.15)

Γ l =
(
JΓ 2JT

) 1
2 . (7.16)

Then the original method is able to compute and inflation gain ρ to obtain the outer
enclosure

Eout = E (µout, (1 + ρ) · Γ l) . (7.17)

However, in the singular case, E is degenerate or h is singular. So El is degenerate
as illustrated by Figure 7.4. In other words, Γ l is non-invertible because either J
and/or Γ are non-invertible. The fact that El is degenerate creates two problems:

1. One cannot compute ρ with the original formula which contains the inverse of
Γ l

2. While El is flat in some direction, h (E ) may be not flat in the same direction.
Thus, even an infinite inflation of El cannot enclose h (E ).

To solve the first problem, the formula of ρ must be updated using pseudo inverse. To
solve the second problem, the flatness of El must be removed to obtain an intermediate
ellipsoid Em which will be inflated to compute Eout.

7.3.1.1 Computation of Em

To avoid pessimism in the method, the shape of Em must be close to f (E ). Consider
the eigenvalue decomposition of Γ l, given by

Γ l = UDUT (7.18)

with the orthonormal matrix U ∈ Rn×n and the diagonal matrix D ∈ Rn×n. A choice
for Em can be

Em = E (µout,M) (7.19)

with the shape matrix

M = USUT (7.20)
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Figure 7.3: Non-singular guaranteed ellipsoidal propagation. Eout is obtained by
inflating El.

Figure 7.4: Singular ellipsoidal propagation. An inflation of El cannot enclose h (E )
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Figure 7.5: The ellipsoid Em is obtained by adding non-zero singular values.

and the diagonal matrix

S = diag (s1, s2, . . . , sn) ,

si =

{
di ifσi > 0,

qi ·max
x∈E

∣∣eT
i U

T (f (x)− µout)
∣∣ else, (7.21)

where the qi > 0 are design parameters and where di is the ith diagonal element of
D. The matrix M is obtained by replacing the zero-value eigenvalues of Γ l by the
term

si = qi ·max
x∈E

∣∣eT
i U

T (f (x)− µout)
∣∣ (7.22)

which makes Em have a similar size than f (E ) in the direction where El is flat, as
illustrated by Figure 7.5. The parameters qi have been added empirically to give less
pessimism depending on the shape of f (E ). Note that Em is only flat in the directions
where f (E ) is flat.

7.3.1.2 Computation of ρ

Then, the inflation gain ρ can be computed as

ρ = min
{
ρ ∈ R+|∀x̃ ∈ E (In) ,

∥∥∥b̃ (x̃)∥∥∥
2
≤ ρ

}
,

with the function

b̃ :Rn 7→ Rn,

x̃ → M+ · (f (Γ · x̃+ µ)− µout)− x̃. (7.23)

The function b̃ is similar to the original one, but the inverse of Γ l has been replace
by the pseudo inverse of M .
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Figure 7.6: Illustration of Theorem 7.2 in the singular case

7.3.2 Presentation of the Theorem

This section present the Theorem 7.2 which is illustrated by Figure 7.6. Note that,
in a non-singular case, the ellipsoids E (µout,Γ l) and E (µout,M) are identical.

Theorem 7.2. Let E = E (µ,Γ ) be an ellipsoid of Rn with µ ∈ Rn and Γ ∈ Sn. Let
f be a C1 mapping over Rn. It’s Jacobian matrix at the origin is written,

J =
∂f

∂x
(µ) . (7.24)

Let

Γ l =
(
JΓ 2JT

) 1
2 ,

∈ Sn,

and consider the eigenvalue decomposition of Γ l, given by

Γ l = UDUT (7.25)

with the orthonormal matrix U ∈ Rn×n and the diagonal matrix D ∈ Rn×n. Consider
the point

µout = f (µ) , (7.26)

and the matrix

Γ out = (1 + ρ) ·M , (7.27)
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with the inflation gain

ρ = min
{
ρ ∈ R+|∀x̃ ∈ E (In) ,

∥∥∥b̃ (x̃)∥∥∥
2
≤ ρ

}
, (7.28)

where

b̃ :Rn 7→ Rn,

x̃ → M+ · (f (Γ · x̃+ µ)− µout)− x̃. (7.29)

with M ∈ Rn×n and its pseudo-inverse M+ are given by
case 1 (General): if Γ l is invertible, then

M = Γ l, (7.30)
M+ = Γ−1

l , (7.31)

case 2 (Singularity): if Γ l is non-invertible, then

M = USUT , (7.32)
M+ = US+UT , (7.33)

S = diag (s1, s2, . . . , sn) , (7.34)

si =

{
di if di > 0,

qi ·max
x∈E

∣∣eT
i U

T (f (x)− µout)
∣∣ else, (7.35)

where di is the ith diagonal element of D, ei is the ith unitary vector of the Cartesian
base of Rn and qi > 0 are design parameters. Then, the ellipsoid Eout = E (µout,Γ out)
is an outer enclosure of f (E ).

Proof. The case 1 refers to Theorem 4.5. To study the case 2, let x ∈ E . From (7.3),
there exist x̃ ∈ E (In) such that

x = µ+ Γ · x̃. (7.36)

Then, let

ỹ = x̃+ b (x̃) (7.37)

From (7.29), one has

M · ỹ = M
(
M+ · (f (Γ · x̃+ µ)− µout)

)
,

(7.36)
= MM+ · (f (x)− µout) , (7.38)

Moreover, from Appendix 10, one gets

MM+ (f (x)− µout) = (f (x)− µout) . (7.39)
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Thus

M · ỹ = (f (x)− µout) . (7.40)

As a result,

f (x) = µout +M · ỹ,
(7.27)
= µout + Γ out

(
1

(1 + ρ)
ỹ

)
. (7.41)

Then, since x̃ ∈ E (In), one has ∥x̃∥2 ≤ 1. So, from (7.37), (7.28) and the triangle
inequality, one deduces∥∥∥∥ 1

1 + ρ
ỹ

∥∥∥∥
2

=
1

1 + ρ
∥ỹ∥2

≤ 1

1 + ρ
· (∥x̃∥2 + ∥b (x̃)∥2) , (7.42)

≤ 1 + ρ

1 + ρ
,

≤ 1. (7.43)

Finally, from (7.41) and (7.43), one has f (x) ∈ Eout. Therefore,

f (E ) ⊆ Eout. (7.44)

In the degenerate case, the propagation operator Ph can be given by

Ph (E ) = h (µ) + (1 + ρ) ·
(
J · (E − µ)⊕ E

(
U (S −D)UT

))
. (7.45)

7.4 Implementation
Based on Theorem 7.2, The Algorithm 4 propose a generalisation of the Algorithm 1.
is also defined for degenerate ellipsoid such that Eout = Ph (E ).

In this algorithm, the centred form is used to compute the boxes [s] and
[
b̃
]

such
that

UT (f (E )− µout) ⊆ [s] (7.46)

b̃ (E ) ⊆
[
b̃
]

(7.47)

Thus, the term max
x∈E

∣∣eT
i U

T (f (x)− µout)
∣∣ can be overestimated by the upper bound

of the ith interval of [s], namely ub ([si]). Moreover, as in the original method, the
inflation gain ρ is overestimated by the upper bound of the norm of

[
b̃
]
, namely

ub
(∥∥∥[b̃]∥∥∥)
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Algorithm 4 Outer ellipsoidal enclosures - with the degenerate case
Inputs E ,{q1, q2, . . . , qn},{α1, α2}
Outputs Ph (E )

1: (µ,Γ ) = E−1 (E )
2: J = ∂h

∂x
(µ) // can be an approximation

3: [J ] = EncloseJacobian (h,E ) // such that ∂h
∂x

(E ) ⊆ [J ]

4: Γ l =
(
JΓ 2JT

) 1
2

5: if |det (Γ l)| > α1 then
6: M = Γ l

7: else
8: (U ,D)= diagonalization(Γ l)
9: [s] = UT · [J ] · Γ · [1n]

10: for i from 1 to n do
11: if di > α2 then
12: si = di
13: else
14: si = qi · ub ([si])
15: end if
16: end for
17: S = diag (s1, s2, . . . , sn)
18: M = USUT

19: end if
20:

[
b̃
]
=

(
M+ · [J ] · Γ − In

)
· [1]n

21: ρ = ub
(∥∥∥[b̃]∥∥∥)

22: µout = h (µ)
23: Γ out = (1 + ρ) ·M
24: Ph (E ) = E (µout,Γ out)
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The matrices U and D can be obtained by several diagonalisation algorithms and
their computation does not need to be rigorous. Since, Γ l ∈ S+

n , one can also use a
singular values decomposition to diagonalise. However the computation of M+,

[
b̃
]

and ρ must be rigorous.
The parameters α1 > 0 and α2 > 0 are threshold to check if det (Γ l) ̸= 0 and

di > 0. This threshold must be used because of the approximation error in the
computation of det (Γ l) and di, even when they are equal to zero.

A limit of this algorithm is that [si] is never fully flat even if the output is flat,
because of the pessimism in the computation of [si]. Using the very small value of
ub ([si]) result in horrible pessimism in practice. So, when one has mathematical
evidence that [si] = {0}, then one should consider si = 0. However, this is not
feasible on a high-dimensional system when this case occurs. In the applications of
this thesis, [si] = {0} may be assumed true without a full guarantee.

As said before, the parameter qi can be tuned to reduce the value of ρ to reduce
pessimism. One should consider qi = 1 by default. When the values are properly
selected, the pessimism of the method is similar to the original one.

7.5 Application
This section illustrates the general propagation on a 2-dimensional example. In this
example, a controller relies on low-frequency measurement, creating some delays in
the correction action, which can make the system unstable. Consider the hybrid
dynamical system described by

ẋ = f (x,mk) , for t ∈ [tk, tk+1[

mk = x (tk) , (7.48)

where x ∈ R is a continuous-time variable and mk ∈ R is a discrete-time measurement
of x at the time tk = T · k with T > 0. The dynamics of the system are described by
the differentiable function

f : R2 → R

(x,m) 7→ 1

2
sin (x)−m, (7.49)

Since, f (0, 0) = 0, the origin (x,m) = (0, 0) is an equilibrium point of the hybrid
system. Moreover, as illustrated by Figure 7.7, the stability of the origin depends
on the value of T . In the function f , the term 1

2
sin (z) makes the system diverge,

but when mk is close to x, the term −m compensate the sinus and make the system
converge towards 0. So, if mk is frequently updated (little T ), then x (t) converges
towards 0 and mk follows it. However, when mk is updated at a low frequency (large
T ), there are too many delays in the correction, so there is some overshoot and so
x (t) diverges.

The evolution of the system can then be described by a piecewise continuous state
vector z (t) =

[
x (t) mk

]T ∈ R2 for all t ∈ ]tk, tk+1] whose evolution is described
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Figure 7.7: Time evolution of the state (x (t) ,mk). With a period T = 1, the system
is stable. With T = 2, there is some overshoot but the system is stable. With T = 3,
the system is unstable.
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by

ż (t) = f z (z (t)) ,

z
(
t+k
)
= hz (z (tk)) . (7.50)

where

f z (z (t)) =

[
f (x (t) ,mk)

0

]
, for t ∈ ]tk, tk+1] (7.51)

and where

hz (z) = M · z, (7.52)

with

M =

[
1 0
1 0

]
. (7.53)

As detailed in the following Chapter 8, to study the stability of this system, it will
be discretised at the times tk, giving the discrete system

z (tk+1) = ϕz,T ◦ hz (z (tk)) , (7.54)

where ϕz,T is the flow function of f z for a time T . Let us write hloop = ϕz,T ◦ hz.
From (7.49), the origin is an equilibrium point of the hybrid system, i.e. hloop (0) = 0.
Then, consider the ellipsoid

E = E (Γ ) ,

Γ =

[
0.1 0.5
0.5 0.01

]
. (7.55)

The ellipsoidal enclosure Phloop (E ) of hloop (E ) is computed with the guaranteed el-
lipsoidal propagation method. The Jacobian matrix of hloop is computed from the
Jacobian matrix of ϕz,T and hz such that

∂hloop

∂z
(E ) =

∂ϕz,T

∂z
(h (E )) · ∂hz

∂z
(E ) . (7.56)

The Jacobian matrix of ϕz,T is computed by a guaranteed integration of the vari-
ational equation. The Jacobian of hz is M . Since hz is a singular mapping, Phloop (E )
is computed will Algorithm 4.

The result of this computation is illustrated by Figure 7.8. The mapping hz flatten
E . But with the effect of, ϕz,T , hloop (E ) is likely not flat.
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Figure 7.8: Result of the computation of Phloop (E )

7.6 Conclusion
This chapter presents a generalisation of the guaranteed ellipsoidal to include singular
mappings and degenerate ellipsoids. In the singular case, new nonzero eigenvalues,
computed with interval analysis, are added to the propagated ellipsoid. As the pess-
imism of the method is sensitive to the choice of the new eigenvalues, some additional
parameter tuning is required. Moreover, when the image of the nonlinear mapping is
flat, assumptions on the flatness of the mapping are required for the method to rigor-
ously compute a flat outer ellipsoidal enclosure. The results of this chapter have been
presented at the 7th IFAC Conference on Analysis and Control of Nonlinear Dynam-
ics and Chaos [61]. This paper received the Young Author Award. In next following
chapters, this generalised method will be used to study the stability of synchronous
hybrid nonlinear systems.
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Chapter 8

Stability of synchronous Hybrid
Systems

8.1 Introduction
After studying the stability of discrete-time systems in Chapter 5, and the stability
of continuous-time systems in Chapter 6, this chapter studies their combination: syn-
chronous hybrid systems, presented in Section 3.2.3. Based on the methods presented
in Chapter 5 and Chapter 6, this chapter proposes a new method to prove that the
system is exponentially stable in an ellipsoid. This chapter also uses the results on
the singular mappings and the degenerate ellipsoids, presented in Chapter 7.

As in the previous chapters, this chapter presents a method to compute an ellipsoid
in which the system is exponentially stable, in the sense that every trajectory of the
system that starts in the ellipsoids converges exponentially towards the equilibrium
point. However, this chapter does not provide a method to prove that the ellipsoid
is also positive invariant with respect to the system. The topic of positive invariance
will be discussed at the conclusion of the chapter.

The stability analysis method of this chapter is similar to the one in Chapter 6 in
the sense that the system is discretised. For synchronous hybrid systems, the discret-
isation is made with cycle mapping, which is the composition of the systems’ periodic
continuous-time and discrete-time mappings. The stability of the synchronous system
is deduced from the stability of the discretised systems. A similar form of deduction
has been proposed in [79, 36], using a Lyapunov function. However, as the method
of this chapter relies on the guaranteed propagation of ellipsoids, it can be applied to
high-dimensional systems.

The chapter is organised as follows. Section 8.2 presents the specificity of degener-
ate ellipsoids. Section 8.3 present how the stability of the synchronous hybrid systems
can be deduced from the stability of the discretised systems. Section 8.4 discusses
the algorithmic implementation of the stability analysis. Finally, Section 8.5 applies
the method to a hybrid version of the application examples in Chapters 5 and 6.
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Figure 8.1: The synchronous hybrid system is a continuous-time system with discrete-
time updates. Discrete updates are time-dependant.

8.2 Problem definition
Consider a set of modes

Q = {1, 2, . . . , N} , (8.1)

a set of increasing times {τ1, τ2, . . . , τN} ∈ R with τ1 = 0 and a period T > τN .
Consider the two time representations

tq,k, = tq + k · T, ∀q ∈ Q, ∀k ∈ N, (8.2)

ti = τi−⌊ i−1
N ⌋·N +

⌊
i− 1

N

⌋
· T, ∀i ∈ N, (8.3)

and the time delays

Tq = (tq+1 − tq) > 0, ∀q ∈ Q (8.4)

In addition, consider a synchronous hybrid system{
ż (t) = f q (z (t)) , if t ∈ ]tq,k, tq,k + Tq[ ,

z
(
t+q,k

)
= hq (z (tq,k)) ,

(8.5)

illustrated by Figure 8.1, as presented in Section 3.2.3 of Chapter 3, where t+q,k rep-
resent the time instant just after the discrete update, and where, for all q ∈ Q, the
mappings f q : Rp → Rp is Kq,f -Lipschitz and the mapping hq : Rp → Rp is Kq,h-
Lipschitz. So according to Theorem 3.2, these mappings are also C1. The solution of
the system z (t) is piecewise continuous. Assume that z (t) = 0 is a constant solution
of the system, such that for all q ∈ Q

0 = f q (0) , (8.6)
0 = hq (0) . (8.7)
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To evaluate the convergence of z (t), the problem of this chapter consists in computing
an ellipsoid E of initial conditions with which z (t) converge exponentially towards
the equilibrium point 0, i.e. there exist α > 0 and γ ∈ ]0, 1[ that verify

z (0) ∈ E ⇒ ∥z (t)∥Γ−2 ≤ α ∥z (0)∥Γ−2 et·ln γ,∀k ∈ . (8.8)

with Γ = E−1 (E ). If this ellipsoid exists, then the system is exponentially stable in
E . Note that this chapter does not deal with the positive invariance topic which will
be discussed at the conclusion of the Chapter. The problem is decomposed into two
steps:

• Discretising the system with a cycle mapping to prove its stability with the
method of Chapter 5 for the resulting system, as presented in Section 8.3.1.

• Deducing that the system is exponentially stable in the ellipsoid E , as presented
in Section 8.3.2

8.3 Proof of the exponential stability

8.3.1 Proving the stability of the discretised system.

The synchronous hybrid system from Section 8.2 can be discretised with respect to
the event time tq,k, using the cycle mapping presented in Section 3.2.3. To recall,
each mode q ∈ Q last for a duration Tq = (ti+1,0 − ti,0) > 0, such that

∑
q∈Q

Tq = T . So

from the beginning to the end of the mode, the state z is affected by the flow ϕq,Tq

of f q for a duration Tq such that

z (tq+1,k) = ϕq,Tq

(
z
(
t+q,k

))
. (8.9)

As a result, the cycle of the synchronous hybrid system is described by the mapping

hcycle = ϕN,TN
◦ hN ◦ . . . ◦ ϕ2,T2

◦ h2 ◦ ϕ1,T2
◦ h1. (8.10)

that verifies the following recursive formula

zk+1 = hcycle (zk) ,

zk = z (t1,k) , (8.11)

illustrated by Figure 8.2. Of course, it is possible to define other hcycle mappings
depending on when the cycle starts. The stability of the discretised system can be
studied with the method from Chapter 5, as detailed in Section 8.4.

8.3.2 Extension of stability to the synchronous hybrid system

After proving the exponential stability of the discrete system (8.11), the stability
of the synchronous hybrid systems is deduced with Theorem 8.1, illustrated by Fig-
ure 8.3.
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Figure 8.2: Discretisation of the synchronous hybrid system

Figure 8.3: The exponential convergence of the synchronous hybrid system is deduced
from the exponential convergence of the discretised system because the mappings
composing hcycle are Lipschitz.

Theorem 8.1. Consider a nonlinear synchronous hybrid system{
ż (t) = f q (z (t)) , if t ∈ ]tq,k, tq,k + Tq[ ,

z
(
t+q,k

)
= hq (z (tq,k)) ,

(8.12)

with the piecewise continuous state z (t) ∈ Rn, the Kq,f -Lipschitz mappings f q, the
Kq,h-Lipschitz mappings hq and time representation tq,k presented in Section 8.2.
Consider the cycle mapping of the synchronous hybrid system

hcycle = ϕN,TN
◦ hN ◦ . . . ◦ ϕ2,T2

◦ h2 ◦ ϕ1,T2
◦ h1, (8.13)

and the discretised system

zk+1 = hcycle (zk) ,

zk = z (t1,k) , (8.14)

If the discretised system (8.14) is locally exponentially stable at the origin, then the
synchronous hybrid system (8.12) is also locally exponentially stable at the origin.
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Proof. Let z0 ∈ Rp. From (5.4), since the discretised system is locally exponentially
stable, then there exist an ellipsoid E , α > 0 and γ ∈ ]0, 1[ that verify

z0 ∈ E ⇒ ∥zk∥Γ−2 ≤ α ∥z0∥Γ−2 ek·ln γ,∀k ∈ N, (8.15)
⇔ ∥z (t1,k)∥Γ−2 ≤ α ∥z (0)∥Γ−2 ek·ln γ,∀k ∈ N, (8.16)

with Γ = E−1 (E ). In addition, for all q ∈ Q, hq is Kq,h-Lipschitz, so from Defini-
tion 3.9 ∥∥z (

t+q,k
)∥∥

2
= ∥h (z (tq,k))∥2
≤ Kq,h · ∥z (tq,k)∥2 . (8.17)

Moreover, for all q ∈ Q, f q is Kq,f -Lipschitz, so from Theorem 3.3, one gets

∥z (t)∥2 ≤
∥∥z (

t+q,k
)∥∥

2
· eKq,f(t−tq,k), ∀t ∈ ]tq,k, tq+1,k[ . (8.18)

As a result, from (8.15), (8.17) and (8.18), one obtains

∥z (t)∥2 ≤
q∏

i=1

Ki,h · α ∥z (0)∥Γ−2 eK(t−tq,k)+k·ln γ · ∀t ∈ ]tq,k, tq+1,k[ (8.19)

Then, with ∆t = t− tq,k ∈ [0, T [ and knowing that tq,k = τq + k · T with τq ∈ [0, T [,
one has

K (t− tq,k) + k · ln γ = Kq,f (t− tq,k) + (tq,k − τq) ·
ln γ

T
,

= Kq,f ·∆t+ (t−∆t− τq) ·
ln γ

T
,

=

(
Kq,f −

ln γ

T

)
∆t− τq

ln γ

T
+ t

ln γ

T
. (8.20)

Moreover, since γ ∈ ]0, 1[ and (τq,∆t) ∈ [0, T [, one deduces

K (t− tq,k) + k · ln γ <

(
Kq,f −

ln γ

T

)
T − T

ln γ

T
+ t

ln γ

T

= Kq,fT − 2 ln γ + t
ln γ

T
. (8.21)

Thus, one deduces

∥z (t)∥2 ≤ α
′ ∥z0∥2 e

t·ln γ
′

,

with

α
′
=

q∏
i=1

Ki,h · αeKq,fT−2 ln γ > 0 (8.22)

and

γ
′
= γ

1
T

Therefore, according to (8.8), the synchronous hybrid system is exponentially stable
in E .
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8.4 Implementation
The implementation of the stability analysis method presented in Section 8.3 consists
in using Algorithm 2 from Chapter 5 on the discretised system

zk+1 = hcycle (zk) . (8.23)

To use this algorithm:

• one must compute an approximation of the Jacobian matrix of hcycle at the
origin

J cycle ≃
∂hcycle

∂z
(0) . (8.24)

• for a given ellipsoid E , one must compute an interval matrix [J cycle] such that

∂hcycle

∂z
(E ) ⊆ [J cycle] . (8.25)

• When J cycle is singular, some tuning of the axis-aligned Lyapunov equation may
be required.

Again, all these computations can be done numerically with polynomial complexity.
Therefore the numerical method is computationally tractable and can be used on high
dimensional systems.

Computation of Jcycle The approximation J cycle can be computed from the Jac-
obians of the mappings hq and ϕq,Tq

from (8.10). The Jacobians of the hq at the
origin,

Jhq =
∂hq

∂z
(0) , (8.26)

can be deduced from the analytical expression of hq. An approximation of the Jac-
obians of ϕq,Tq

at the origin,

Jϕq,Tq
≃

∂ϕq,Tq

∂z
(0) , (8.27)

can be evaluated with the integration of the variational equation, as presented in
Section 4.5 from Chapter 3. Then, one can compute

J cycle = JϕN,TN
· JhN

· . . . · Jϕ2,T2
· Jh2 · Jϕ1,T1

· Jh1 (8.28)
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Algorithm 5 Computation of [J cycle]

Inputs E
Outputs [J cycle]

1: Ei = E
2: [J cycle] = Ip

3: for q from 1 to N do
4:

[
Jhq

]
=
[
∂hq

∂z

]
([Ei])

5: Ei = Phq (Ei)
6:
7:

[
Jϕq,Tq

]
= integration_variational_equation

(
Ei,f q, Tq

)
8: // see Section 4.5.2.
9:

10: Ei = Pϕq,Tq
(Ei)

11: [J cycle] =
[
Jϕq,Tq

]
·
[
Jhq

]
· [J cycle]

12: end for

Computation of [J cycle] The computation of [J cycle] is more challenging as it re-
quires a recursive method presented by Algorithm 5.

In this algorithm, an interval matrices of the Jacobian,
[
Jhq

]
and

[
Jϕq,Tq

]
are

computed for the intermediate mappings, hq and ϕq,Tq
of (8.10) so that

[J cycle] =
[
JϕN,TN

]
· [JhN

] · . . . ·
[
Jϕ2,T2

]
· [Jh2 ] ·

[
Jϕ1,T1

]
· [Jh1 ] . (8.29)

However, these interval matrices must be computed on intermediate sets, such that
for each q ∈ Q, one has

∂hq

∂z
(Sq) ⊆

[
Jhq

]
,

∂ϕq,Tq

∂z

(
S ′

q

)
⊆

[
Jϕq,Tq

]
, (8.30)

with the intermediate sets

Sq = ϕq−1,Tq−1
◦ hq−1 ◦ . . . ◦ ϕ1,T1

◦ h1 (E ) , (8.31)

S ′

q = hq (Sq) . (8.32)

which contains the state z (t) at the intermediate times. In the algorithm, the sets
Sq and S ′

q are enclosed by the intermediate ellipsoid Ei, on which the Jacobians are
evaluated. The interval matrix

[
Jhq

]
is computed on Ei with using the analytical

expression of ∂hq

∂z
. The interval matrix

[
Jϕq,Tq

]
is computed on Ei by a guaranteed

integration of the variational equation, as presented in Section 4.5.2.
The intermediate ellipsoid is computed with the guaranteed propagation of el-

lipsoid, with the operators Phq and Pϕq,Tq
. This is possible because the Jacobian of
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the intermediate mappings are computed before each propagation. Note that, while
Ei is evaluated by a recursive propagation in Algorithm 5, there exist an alternative
method: Ei can be computed by propagating E with several intermediate mappings
in one step. For example, with (8.31), one can compute

Ei = Pϕq−1,Tq−1
◦hq−1◦...◦ϕ1,T1

◦h1 (E ) (8.33)

so that Sq ⊆ Ei, using the intermediate interval matrix

[J i] =
[
Jϕq−1,Tq−1

]
·
[
Jhq−1

]
· . . . ·

[
Jϕ1,T1

]
· [Jh1 ] .

In this thesis, no detailed studies have been made to compare the performance of
these two computations of Ei in term of computational complexity and pessimism.

As a result, with Algorithm 5 and the Algorithm 4 from Chapter 7, the compu-
tation of Phcycle requires 2N intermediates propagation of ellipsoids, used to evaluate
the Jacobian of hcycle.

Axis aligned Lyapunov equation with singularity As presented in Section 5.4,
one operation of the Algorithm 2 consist in computing P ∈ S+

n solution of

JT
cyclePJ cycle − P = −JT

cycleJ cycle. (8.34)

Then, in Algorithm 2, the initial ellipsoid is chosen as

E = E
(
10−α · P− 1

2

)
with α > 0. If J cycle is non-singular, then E is non-degenerate, which is convenient
to test the inclusion Phcycle (E ) ⊂ E with a numerical method. However, if J cycle is
singular, then E is degenerate and the inclusion is not possible.

Therefore, when J cycle is singular, the right term of 8.34 can be changed to make
E non-degenerate. For example, P ∈ S+

n can be the solution of

JT
cyclePJ cycle − P = −JTJ . (8.35)

where J is a non-singular matrix close to J cycle.

8.5 Application on the formation control
In this section, the stability analysis of synchronous hybrid system is illustrated with
a hybrid version of the application example of Chapter 5 and Chapter 6. To recall,
two ROVs are controlled with a virtual structure approach to reach an equilateral
triangular formation. While this system was represented as a discrete-time system
in Chapter 5, and a continuous-time system in Chapter 6, it is now modelled as a
synchronous hybrid system.

This new model can thus describe the physical dynamical evolution of the robots
while considering the discrete-time measurements and the memory of the embedded
computers.

In addition, some modifications have been considered in the model in order to
better fit with the real model of Chapter 9:
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Figure 8.4: Illustration of the two ROVs system with continuous and discrete vari-
ables.

• The derivative component of the controller has been removed because the real
robots do not measure their speed.

• Damping has been added to the model because damping effects are non-neg-
lectable on the real system. In this section, the damping is only linear but one
can also add nonlinear damping.

8.5.1 Mathematical description of the system

As illustrated by Figure 8.4 the ROVs Inky and Blinky are described using polar
coordinates. The position and speed of the robots are continuous-time variables. The
polar horizontal coordinates of the ROVs are written

(db, ϕb) ∈ R2(for Inky),
(dr, ϕr) ∈ R2(for Blinky).

Discrete time measurement The robots have a synchronous clock, but they do
not measure their position at the same time, as illustrated by Figure 8.5. Consider
two mods

qb = 1 (After Inky’s measurement) , (8.36)
qr = 2 (After Blinky’s measurement) , (8.37)

and the set of mods Q = {qb, qr}. Consider the measurement period T > 0 and the
times τqb = 0 and τqr = T

2
. For all q ∈ Q, the transition to the mode q happens at
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Figure 8.5: Time representation of the system

time

tq,k = tq + k · T, ∀q ∈ Q, ∀k ∈ Z. (8.38)

The two mods last for a duration T
2
. The time of the discrete events is also represented

with a single indent number such that, for all j ∈ N,

tj = t(j−⌊ j−1
2 ⌋·2),(⌊ j−1

2 ⌋) (8.39)

= (j − 1) · T
2

(8.40)

The measures are memorised in the discrete-time variables (db,k, ϕb,k, dr,k, ϕr,k) such
that

(db,j+1, ϕb,j+1) =

{
(db,j, ϕb,j) if j is even
(db (tj+1) , ϕb (tj+1)) if j is odd

(dr,i+1, ϕr,i+1) =

{
(dr (tj+1) , ϕr (tj+1)) if j is even
(dr,j, ϕr,j) if j is odd

(8.41)

Motion and control Then, the motion of the robots is described by the following
ODE


d̈b (t) = u1,j − c · ḋb (t) ,
d̈r (t) = u2,j − c · ḋr (t) ,
ϕ̈b (t) =

u3,j

db(t)
− c · ϕ̇b (t) ,

ϕ̈r (t) =
u4,j

dr(t)
− c · ϕ̇r (t) ,

∀t ∈ ]tj, tj+1[ (8.42)
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where (u1,j, u2,j, u3,j, u4,j) ∈ R4 are the discrete-time acceleration inputs of the system
and where c > 0 is a damping coefficient. As in the previous chapters, there is a
singularity when db (t) = 0 or dr (t) = 0 which is avoided in the stability analysis.
Then, as illustrated by Figure 8.4, on the time interval ]tj, tj+1[, the discrete-time
desired positions of the robot are(

d∗, ϕj −
π

6

)T

(for Inky), (8.43)(
d∗, ϕj +

π

6

)T

(for Blinky), (8.44)

with the desired distance d∗ > 0 and where the orientation of the triangle ϕj is given
by

ϕj =
ϕb,j + ϕr,j

2
. (8.45)

The robots track their desired position with the following saturated proportional
controller

u1,j = s · arctan (kp,d · (d∗ − db,j)) ,

u2,j = s · arctan (kp,d · (d∗ − dr,j)) ,

u3,j = s · arctan
(
kp,ϕ ·

(
ϕj −

π

6
− ϕb,j

))
u4,j = s · arctan

(
kp,ϕ ·

(
ϕj +

π

6
− ϕr,j

))
(8.46)

with the saturation amplitude s > 0 and the controller gains (kp,d, kp,ϕ) > 0.

Towards the synchronous hybrid model Consider the continuous-time state
vector x = (xi)i∈J1:7K ∈ R7 with

x1 = db − d∗,

x2 = dr − d∗,

x3 = ϕr − ϕb −
π

3
,

x4 = ḋb,

x5 = ḋr,

x6 = ϕ̇b,

x7 = ϕ̇r, (8.47)

the discrete-time numerical memory vector mj = (mi,j)i∈J1:3K ∈ R3 with

m1,j = db,j − d∗,

m2,j = dr,j − d∗,

m3,j = ϕr,j − ϕb,j −
π

3
. (8.48)
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and the piecewise continuous error vector vj = (vi,j)i∈J1:2K ∈ R2 with

v1 (t) = ϕb (t)− ϕb,j, ∀t ∈
[
t+j , tj+1

]
,

v2 (t) = ϕr (t)− ϕr,j, ∀t ∈
[
t+j , tj+1

]
. (8.49)

The evolution of the continuous state vector is given by the ODE

ẋ (t) = fx (x (t) ,mj) ,∀t ∈ ]tj, tj+1[ ,

0 = fx (0,0) , (8.50)

with

fx (x (t) ,mj) =



x4

x5

(x7 − x6)
−s · arctan (kp,d ·m1,j)− c · x4

−s · arctan (kp,d ·m2,j)− c · x5
1

x1+d∗
s · arctan

(
kp,ϕ · m3,j

2

)
− c · x6

−1
x2+d∗

s · arctan
(
kp,ϕ · m3,j

2

)
− c · x7


. (8.51)

The computation of fx is detailed in Appendix 10. The evolution of the memory
vector is given by

mj+1 =

{
hm,qb (x (tj+1) ,mj,v (tj+1)) , if j is odd
hm,qr (x (tj+1) ,mj,v (tj+1)) , if j is even

0 = hm,qb (0,0) , (8.52)
0 = hm,qr (0,0) , (8.53)

with

hm,qb (x (tj+1) ,mj,v (tj+1)) =

 x1 (tj+1)
m2,j

x3 (tj+1)− v2 (tj+1)

 , (8.54)

and

hm,qr (x (tk+1) ,mk,v (tj+1)) =

 m1,j

x2 (tj+1)
x3 (tj+1) + v1 (tj+1)

 .

The computation of hm,qb and hm,qr are detailed in Appendix 10. Moreover, the
evolution of ,v (t) is given by

v̇ (t) = f v (x (t)) ,∀t ∈ ]tj, tj+1[ ,

0 = f v (0)

v
(
t+j
)
=

{
hv,qb (v (tj)) , if j is odd,
hv,qr (v (tj)) , if j is even,

0 = hv,qb (0) ,

0 = hv,qr (0) ,
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with

f v (x (t)) =

[
x6 (t)
x7 (t)

]
, (8.55)

hv,qb (v (tj)) =

[
0

v2 (tj)

]
, (8.56)

hv,qr (v (tj)) =

[
v1 (tj)

0

]
. (8.57)

The computation of f v, hv,qb and hv,qr are detailed in Appendix 10.

Synchronous hybrid model To describe the system like (8.5), the variables are
regrouped in the state variable

z (t) =

 x (t)
m (t)
v (t)

 ∈ R12, (8.58)

with

m (t) = mj, ∀t ∈
[
t+j , tj+1

]
. (8.59)

The evolution of this state is deduced from fx, hm,qb , hm,qr , f v, hv,qb and hv,qr , and
is given by {

ż (t) = f (z (t)) , if t ∈
]
tq,k, tq,k +

T
2

[
,

z
(
t+q,k

)
= hq (z (tq,k)) ,

(8.60)

where

f (z (t)) =

 fx (x (t) ,mj)
0

f v (x (t))

 , (8.61)

hqb (z (tqb,k)) =

 x (tqb,k)
hm,qb (x (tqb,k) ,mj,v (tqb,k))

hv,qb (v (tqb,k))

 , (8.62)

hqr (z (tqr,k)) =

 x (tqr,k)
hm,qr (x (tqr,k) ,mj,v (tqr,k))

hv,qr (v (tqr,k))

 . (8.63)

All these mappings are Lipschitz and verify

0 = f q (0) ,

0 = hq (0) . (8.64)

The flow of the mapping f q for a time T
2

is written ϕT
2
. The cycle mapping given by

hcycle = ϕT
2
◦ hqr ◦ ϕT

2
◦ hqb . (8.65)
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Finally, the parameter values are given by table 8.1. These parameters approximate
the real dynamics of the robot of Chapter 9.

Parameter value unit
T 9 s
s 2.5 m.s−2

kp,d 0.1 m−1

c 1 s−1

kp,ϕ 0.1 rad−1

d∗ 3 m

Table 8.1: Parameters of the system

8.5.2 Results

Using the procedure detailed in Section (8.4), an ellipsoid E ⊆ R12 is computed as
well as its propagation Phcycle (E ). Note that some singular mappings (hv,qb and hv,qr)
are involved in the computation of Phcycle (E ), so the generalised propagation method
of Chapter 7 is used. Then, the inclusion Ph (E ) ⊂ E is verified, as illustrated by
Figure (8.6). As a result, E is positive invariant with respect to the discretised system

zk+1 = hcycle (zk) (8.66)

and the synchronous hybrid system (8.60) is exponentially stable in the ellipsoid E .
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Figure 8.6: Representation of the 12-dimensional ellipsoids E (red) and Phcycle (E )
(green) with orthogonal projections on the 2-dimensional planes (0, xi, xj) with i < j.

8.6 Conclusion
This chapter presents a numerical guaranteed method to compute ellipsoids in which
a high-dimensional nonlinear synchronous hybrid system is stable. This method is
based on the results of Chapters 5, 6 and 7. To our knowledge, it is the first time
that the stability of such systems has been studied with an interval method.

The stability of the hybrid system is deduced from the stability of a discretised
system with a cycle mapping. The method also proves that the ellipsoid is positive
invariant with respect to the discretised system.

However, the method does not prove that the ellipsoid is positive invariant with
respect to the hybrid system. In other words, the state of the hybrid system is
periodically present in the ellipsoid, but the state may escape the ellipsoid during the
cycles.

Future work could study the positive invariance for synchronous hybrid systems.
Even if the state is not bounded by an ellipsoid at every time, there exist some
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Figure 8.7: The method of this chapter can prove that zk+1 = hcycle (zk) is expo-
nentially stable. However, it does not prove that the initial ellipsoid E is positive
invariant. With the additional numerical method, it could be possible to compute a
tube G (t) that enclose all the trajectories z (t) starting in the ellipsoid E .

Figure 8.8: In the Poincare Section S, the Poincare mapping p projects the point z0

on p (z0).

numerical tools that can compute tubes to do so, such as the codac library [97], as
illustrated by Figure 6.4.

Finally, this method can be extended to the asynchronous hybrid system. These
systems are more complex to study, considering that the time of the discrete updates
can be state-dependent and change with the initial condition. To deal with the
variation of the discrete update time, the hybrid system can be discretised with a
Poincare method, presented in [35]. With this complex discretisation, the system is
described by mappings, called Poincare mappings, defined on sections of Rn that are
transverse to the flow of the continuous dynamics, as illustrated by Figure 8.8. These
sections are often the guards of the hybrid system. There exists some numerical
method to compute the Jacobian of a Poincare mapping, as in [42]. Thus It is
possible to adapt the stability analysis method to a Poincare discretisation, to study
an asynchronous hybrid system.
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Chapter 9

Experimental application

In addition to stability analysis, experiments were conducted to illustrate the stability
of formation control in a real scenario. This chapter presents a real-world implement-
ation of the application example of Chapter 8. The triangular formation has been
experimented with two ROVs from ENSTA Bretagne. The localisation and the con-
trol are centralised. Before implementing the real system, the theoretical stability
had to be proved in Chapter 8. Details about the experimental set-up are presented
in Section 9.1. The results of the experiments are presented in Section 9.2. Discussion
about the stability of the experiments is presented in Section 9.3.

9.1 Presentation of the experimental set-up

9.1.1 The ROVs and the USBL

This section presents the robotic materials used during the experiments. Figure 9.1
gives an overview of the experimental set-up. The two ROVs Inky and Blinky are
connected by cable to the same laptop computer that centralises the control and the
information. The laptop is also connected to a buoy equipped which can localise the
robots with an Ultra Short Baseline (USBL) acoustic sensor.

The ROVs, depicted in Figure 9.2 are BlueROV2 from the BlueRobotics company.
These low-cost commercial robots are very common in the academic field and are well-
documented online1. They have the same thrusters configuration, called ‘heavy ’, with
8 thrusters that control their 6 degrees of freedom. They are equipped with:

• a Raspberry Pi 4 Computer.

• a frontal monocular camera2 used to record videos of the experiment.

• a barometer3 used to measure the robots’ depth.
1https://bluerobotics.com/store/bluerov2/
2https://bluerobotics.com/store/sensors-sonars-cameras/cameras/cam-usb-low-light-r1/
3https://bluerobotics.com/store/sensors-sonars-cameras/sensors/bar30-sensor-r1/
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• an IMU4 to measure their orientation and their heading but it is not accurate
enough to provide forward speed. The robots’ IMUs are used in the ROVs’
attitude control, but not in their position control.

• a X150 micro-USBL beacon from the Blueprint Subsea company5. This model
of USBL has a delay of minimum 4 s between two measurements.

A dynamical model of the BlueROV as well as some control advice are presented
in [103]. The robots are programmed along with the ROS2 middleware. Moreover,
they have translation and rotation commands provided by the MAVROS package.
The thrusters produce a maximum translation thrust of about 80N, which allows
the vehicle to reach a maximum horizontal velocity of about 1.5m.s−1. Forward and
lateral inputs must be provided in PWM whose value is between 1000 and 2000, where
1500 is the neutral input, and 1000 and 2000 are the maximum power in one direction
or the other. However, the motors have a dead band such that they are inactive if
one input is in the interval [1450, 1550].

The USBL buoy, also depicted in Figure 9.2 is a prototype that was designed at
the ENSTA Bretagne to localise the two robots. It is equipped with an X150 micro-
USBL beacon and a Razor IMU6. The USBL is configured to send ping to the USBL
beacon of the ROVs, to measure their position in its own frame. The IMU allows
transforming the robot’s position into the North-oriented global frame.

4https://bluerobotics.com/store/comm-control-power/control/navigator/
5https://www.blueprintsubsea.com/seatrac/seatrac-lightweight
6https://learn.sparkfun.com/tutorials/9dof-razor-imu-m0-hookup-guide/all
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Figure 9.1: Experimental set-up with the two ROVs and the USBL buoy.
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Figure 9.2: The ROVs Inky (bottom) and Blinky (top) with the USBL buoy

9.1.2 The centralised formation control

The formation control is described in Figure 9.4. Following the application of Chapter 8,
the robots are controlled to form an equilateral triangle with the Buoy. The controller
is presented in detail in Section 8.5.

The control process of the robots is described in Figure 9.3. The laptop centralises
the control. From the measured horizontal positions of Inky and Blinky, the desired
positions of the ROVs are computed with the formation controller. Then, a position-
tracking controller computes the thruster setpoint sent to Inky and Blinky. In parallel,
the depth and attitude of the ROVs are controlled by an independent decoupled
controller. Finally, the Buoy uses its USBL and IMU to measure the position of the
two ROVs. Note that the ROVs do not communicate or see each other to control
their position.
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Figure 9.3: Control architecture of the system

Figure 9.4: Triangular desired formation of the ROVs. The buoy is the third vertices
of the equilateral triangle.

Stability analysis For the stability analysis, the ROVs can be described by the
synchronous hybrid dynamical system (8.60) of Section 8.5, with the parameters of
Table 8.1. This system was proved stable in Section 8.5. Of course, (8.60) is a simple
model that approximate the real dynamics of the ROVs, assuming that:

• there is no saturation nor dead zone in the thrusters,

• the buoy measurements are periodic and are not subject to noise,

• the ROVs are only subject to linear damping,

• there is no water current,

• the depth and attitude dynamics are decoupled from the horizontal position
dynamics.

Moreover, the controllers of (8.60) are a simplified version of the real controllers.
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9.1.3 ROV centralised localisation

The horizontal position of the ROV is computed from the measurements of the USBL
and the buoy’s IMU, as illustrated by Figure 9.5. The USBL measures the azimuth θa,
the elevation θe and the range r of the ROV in the USBL frame {ex,buoy, ey,buoy, ez,buoy}.
Moreover, the buoy’s IMU measures the rotation matrix Rbuoy that describes the at-
titude of the USBL, such that eT

x,world
eT
y,world

eT
z,world

T

= Rbuoy ·

 eT
x,buoy

eT
y,buoy

eT
z,buoy

T

with the wold frame {ex,world, ey,world, ez,world}. From these measurements, the hori-
zontal position of the ROV is computed as[

px,r
py,r

]
=

[
1 0 0
0 1 0

]
·Rbuoy ·

 r · cos (θa) · cos (θe)
r · sin (θa) · cos (θe)

r · sin (θe)

 , (9.1)

and the polar coordinates are then computed as

dr =
√

px,r + py,r, (9.2)
ϕr = atan2 (py,r, px,r) . (9.3)

Note that, for depth control, the vertical position of the robot pz,r is measured with
the barometer which is more precise than the USBL+IMU.

(a) USBL measurement (θa, θe, r) (b) Position of the ROV (dr, ϕr)

Figure 9.5: Localisation of the ROV

9.1.4 Experimental protocol

The experiments presented in this chapter were made during the Submeeting event,
between the 27th and the 31th of May 2024, at Saint-Raphaël in the south-east of
France. The water current is negligible for these tests.
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Protocol to evaluate the precision of the localisation To evaluate the period
and the precision of the USBL, 8 tests were conducted. One ROV was in the water,
with a fixed position, which was measured. From the measurement of this fixed
position, the standard deviation of the period and the measurement can be computed
to evaluate the precision. Two different environments were tested: the shallow water
and the sea. The depth and the radius of the ROVs during these tests are given by
Table 9.1.

Tests 1,2,3 and 4 were conducted in shallow water, next to the pontoons of the
Port de Boulouris. Blinky was placed on the seabed at different distances from the
buoy and had a fixed position. The buoy was sheltered from the swell. Since the
USBL is in shallow water, there were a lot of acoustic disturbances.

Tests 5,6,7 and 8 were conducted at sea next to Le Lion de Mer at Saint-Raphael.
Inky was controlled to stay at a fixed depth. The horizontal position was not con-
trolled and was assumed constant. The buoy oscillated with the swell. Since the
USBL is at sea, there were fewer acoustic disturbances.

Test number 1 2 3 4 5 6 7 8
Depth (m) 1.6 1.6 1.5 1.7 4.4 4.5 10.5 11
Radius (m) 3.2 6.4 14 1.5 6.8 6.5 7.8 5.6

Table 9.1: Depths of the ROV

Formation control protocol The formation control with two ROVs was tested
with the minimum USBL delay (≃ 4 s between two measurements), in different con-
figurations. Test 12 is a formation control conducted in shallow water, at the same
place as tests 1 to 4 with the same weather conditions, illustrated by Figure 9.6. Tests
9 to 11 are formation control conducted at sea right after tests 5 to 8.

Protocol to test the limit of stability In addition, to test the limit of the
stability of the system with respect to delays, an additional delay δt was added
between the USBL measurement at time t and the use of this measurement by the
controller at time t+δt. This artificial delay can simulate a filtering delay in the USBL
measurement, which would be required if the acoustic signal were to deteriorate. In
theory, when the delays increase, the controller uses older information, and so the
stability of the system decreases. However, the measurement period stayed the same.

This delay was applied to the tests 13 to 15. The additional delay is 1 s for test
13, 2 s for test 14 and 4 s for test 15. Tests 13 to 15 were conducted in shallow water,
right after test 12.
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Figure 9.6: Formation control tests at the Port de Boulouris, Saint-Raphaël, France
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9.2 Results

9.2.1 The DataSet

The data of the ROVs and the buoy were recorded and stored in rosbag files. It is
possible to replay the experiments with the ROS middleware. Moreover, with the
RViz software, a 3d replay of the experiments can be visualised as illustrated by
Figure 9.7. A video and more information about the formation control can be found
on morgan-louedec.fr/submeeting-2024/ .

Figure 9.7: 3d reconstruction of the test 11

9.2.2 The quality of the localisation

As presented in Section 9.1.4, tests 1 to 8 were conducted to evaluate the quality of
localisation. In this section, the quality is evaluated by computing standard deviations
for the USBL measurement period and the measured ROV position.

Measurement period Figure 9.8a presents an evaluation of the USBL measure-
ment period T for the tests 1 to 8, where only one ROV is localised. There is a marker
for each measured period. There is 3% of outliers. Some outliers correspond to 2 · T
when a measurement is missed because the USBL is not able to receive the response
from the ROV. Without the outliers, the mean period is T = 4.37 s with a standard
deviation of σT = 0.03 s.

Figure 9.8b presents the same evaluation for tests 9 to 15, where two ROVs are
localised. There is 7% of outliers. Without the outliers, the mean period is T =
9.14 s with a standard deviation of σT = 0.17 s. As expected, with two ROVs in
the water, the USBL must alternate the measurements, so the period is twice as
long. Moreover, with two ROVs, the measurements are less regular. Nevertheless,
the standard deviation is slow enough to assume a constant measurement period.
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(a) With one ROV. (b) With two ROVs

Figure 9.8: Measurement period of the USBL. There is a marker for each measurement
period. One can observe an average period of 4.37 s for one ROV, and 9.14 s for two
ROVs.

Position measurement The USBL measurements are displayed on Figure 9.10,
the IMU measurements are displayed on Figure 9.9, the estimations of the ROV polar
coordinates (dr, ϕr) are displayed on Figure 9.11 and the standard deviation of the
localisation (σd, σϕ) is displayed on Figure 9.12. Since the position of the ROV is
assumed fixed, the oscillations in Figure 9.11 are considered estimation errors.
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Figure 9.9: Buoy IMU measurement for the tests 1 to 8
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Figure 9.10: USBL measurements for the tests 1 to 8
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Figure 9.11: Measurement of the position (dr, ϕr) for the tests 1 to 8

Figure 9.12: Standard deviation of the position (dr, ϕr) with respect to the test num-
ber

As visible in Figure 9.9, the sway and the surge of the buoy oscillate with the

153



swell. The amplitude is about 0.05 rad in shallow water (tests 1 to 4) and 0.1 rad at
sea (tests 5 to 8). Thus, the swell is more important at sea. Moreover, the heading
of the buoy changes over time in a range of ±0.5 rad. Therefore, it is important to
compensate for the buoy motion in the localisation of the ROV.

In addition, on Figure 9.12, the radius dr is more precise in shallow water, for the
tests 1,2 and 4 (σd < 0.2m), except for the test 3 (σd ≃ 0.52m). Moreover, at sea,
σd is higher for the deep tests 7 and 8 (σd > 0.7m) compared to the less deep tests 5
and 6. Regarding the angle ϕr, the standard deviation is higher for the tests 3, 7 and
8 (σd > 0.16 rad) compared to the other tests (σd < 0.12 rad). All these differences
can be explained as follows.

The test 3 is the worst configuration for the USBL, acoustically speaking. In the
test 1 to 4, the ROV is in shallow water, at a depth of about 1.5m. The motion of the
buoy is similar for these four tests, as illustrated by Figure 9.9. While for tests 1,2 and
4, the ROV is under a radius of 7m, the radius is about 14m for test 3. As a result,
there are more acoustic disturbances for test 3. Due to the shallow water, there are
more reflections of the acoustic signal between the surface and the seafloor. These
reflections create more acoustic multi-path which reduces the precision of the USBL
measurement. Thus the quality of the USBL measurement is deteriorated for test 3,
as illustrated by Figure 9.10. For the tests 1,2 and 4, the standard deviation of θe is
about 0.07 rad and the standard deviation of the range r is about 0.1m. However,
for test 3, their standard deviations are respectively 0.13 rad and 0.3m. In practice,
although the X150 micro-USBL is presented as omnidirectional on the datasheet of
the manufacturer, the USBL localisation is often accurate when robots are inside a
cone under the buoy. The omnidirectionality of the USBL has not been tested. For
test 3, the ROV is too probably far from this cone to be detected accurately.

Moreover, the measurement of the buoy’s IMU and the buoy’s USBL were not
precisely synchronised. As a result, when the buoy oscillates with the swell, the
amplitude of the localisation error is increased. In Figure 9.9, the buoy oscillates
more at sea than in shallow water. This can explain why the sea tests (5 to 8) have
a higher σs, even though there is less acoustic disturbance at sea. Furthermore, this
synchronisation error creates an error of angle, so the radius error is proportional
to the radius. This is why σd is higher for tests 7 and 8 at a depth of about 10m
compared to the test 5 and 6 at a depth of about 5m. Because of this synchronisation
error, the localisation is not reliable in heavy swell.

In addition, on Figure 9.11, for the tests 6 and 8, the angle ϕr drifts. The ROV
probably moved during these two tests. So the value of σϕ is not relevant for tests 6
and 8.

As a result, the error of precision of the localisation of the ROV is non-neglectable
and has some impact on the formation control. From Figure 9.12, the standard
deviation of the radius dr and the angle ϕr can be evaluated as

σd ≃ 0.4m,

σϕ ≃ 0.12 rad. (9.4)
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9.2.3 The quality of the formation control

From the data of the experiments, it is possible to display the discrete state vector

mj =

 db,j − d∗,
dr,j − d∗,

ϕr,j − ϕb,j − π
3
.

 (9.5)

of the synchronous hybrid system presented in Section 8.41. The state of the system
is expected to converge in a neighbourhood of the equilibrium point, whose size is of
the same order as σd for m1,j and m2,j and the same order as 2 · σϕ for m3,j.

Figure 9.13 presents the time evolution of mk for the tests 9, 10, 11 and 12. During
these tests, the system was stable and the ROVs converged towards a neighbourhood
of the equilibrium point. The size of the neighbourhood is visually coherent with the
standard deviation of the ROV localisation. In this neighbourhood, the ROVs can
see each other as illustrated by Figure 9.14. The videos of the formation control can
be found on morgan-louedec.fr/submeeting-2024/ .

Figure 9.13: Results of the formation control.
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(a) Test 10 at sea (b) Test 12 in Shallow water

Figure 9.14: Inky sees Blinky

Deterioration of the stability with additional delays. Figure 9.15 presents
the time evolution of mk for the tests 13, 14 and 15, where a delay δt is added in the
USBL measurement. the USBL measurement at time t is used by the controller at
time t+ δt. The additional delay is 1 s for test 13, 2 s for test 14 and 4 s for test 15.

One can observe that the formation converges to a stable neighbourhood with 1 s
and 2 s of additional delays. However, the state m3 starts to diverge for the test 15
with 4 s of delay, hence the premature stop of this test. During test 15, the ROVs
spun around the buoy, one ROV was fleeing, and the second ROV was chasing the
first.
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Figure 9.15: Formation control with additional delay in the USBL measurement.

9.3 Discussion
Following the results of Section 9.2, the triangular formation control with two ROVs is
achieved with two ROVs. The control is stable in the sense that the robots converge in
a neighbourhood of the equilibrium point. The size of this neighbourhood is coherent
with the precision of the localisation.

Modelling the system with a hybrid system is relevant because the minimum USBL
measurement period is above 4 s. Thus, compared to the continuous dynamic of the
ROVs, the USBL measurements must be considered as periodic discrete-time events.

Moreover, the acoustic localisation is harder to achieve for a large number of
robots. The USBL of the experiments locates only one robot at a time with a ping.
Thus, the USBL measurement period proportionally increases with the number of
robots (+4 s per robot). Sending pings to different robots at the same time can reduce
the period, but the precision of the localisation is deteriorated by ping interference.
An alternative is to synchronise the buoy and the robots with the same clock, so
that the buoy simply listens to the acoustic messages sent by the robots, knowing
in advance the time of their transmission. But it’s not easy to synchronise all the
robots.

In addition, the experiments show an interest in computing a positive invariant
sets when the dynamical system has bounded disturbances. Because of the acoustic
disturbances, USBL localisation precision is limited to a decimetre. To enhance the
stability analysis of the system, a localisation error should be considered in the model.
This error should be bounded by the localisation precision. Adapting all the numerical
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methods of this thesis to include bounded disturbances will be subject to future work.
Some preliminary results are given in [62].

However, the ellipsoid computed in the stability analysis is smaller than the ex-
perimental stable neighbourhood, because of the pessimism in the computations (a
scale 0.01m of compared to 0.1m). Although the numerical methods developed in
this thesis can compute high-dimensional positive invariant sets, it can only compute
small sets.

Moreover, the ground truth was not recorded during the experiments. Future
experiments should compare the discrete-time measured positions with the real con-
tinuous-time positions of the robots in order to show that the continuous part of the
system is also stable. However, to record the real position of the robots, one needs a
high-precision and high-frequency measurement of the position, which is difficult to
implement in an outdoor environment.

In addition, the localisation precision deteriorated because the buoy’s IMU and
USBL were not precisely synchronised. As the buoy moves with the swell, it creates
some error in the computation of the position in the world frame. However, if the
IMU and the USBL are precisely synchronised, the localisation is not deteriorated by
the buoy’s movements, especially when the robots are far from the buoy.

Finally, as expected, adding delays in the control loop decreases the stability of
the formation control. Therefore, delays must be considered in the stability analysis,
when they are significant, to know what is the maximum delay the system can have
while remaining stable.

9.4 Conclusion
This chapter presents a real formation control with two ROVs. The theoretical stabil-
ity of the formation control was validated before the experiment, in Chapter 8. As a
result of the experiments, the formation is achievable and stable in practice. However,
because of the imprecise localisation, the system only converges in a neighbourhood
of the equilibrium point. This neighbourhood is larger than the ellipsoid of stability
computed for this system in Chapter 8.

Moreover, although the localisation and the control of the ROVs are centralised,
it is possible to make them decentralised. A decentralised implementation would
be more efficient with many robots compared to the centralised implementation, as
presented in Chapter 2.

In addition, the experiments show the interest of using hybrid systems to model
underwater robots, because of the low frequency of the USBL measurements. Moreover,
the experiments show the interest of computing a positive invariant set when the
dynamical system has bounded disturbances. The localisation precision could be en-
hanced with a tight synchronisation between the USBL and IMU of the buoy. Future
experiments should compare the measured positions with the ground truth. They
should also include more robots in the formation.
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Chapter 10

Conclusions and Perspectives

Conclusion

In this thesis, a stability analysis method with computer-assisted proof has been
proposed to study high-dimensional nonlinear systems. With this method, one can
prove the stability of the system without manually computing Lyapunov functions.
This method can compute positive invariant ellipsoids and can prove that the system
is exponentially stable in this ellipsoid. The numerical computations of the method
are guaranteed by the interval algebra. This method can thus be applied to problems
of formation control with underwater robots.

The main contributions of this thesis are the following:

• First, the stability analysis method was been designed for high-dimensional
nonlinear discrete-time systems. An ellipsoid that is likely positive invariant
is computed with the discrete-time axis-aligned Lyapunov equation. Then the
ellipsoid is propagated with one step of the recursive mapping of the system,
using the guaranteed propagation of ellipsoids from [95]. Finally, the stability
is deduced when the result of the propagation is strictly included in the original
ellipsoid. This contribution was presented in Chapter 5. Under review at the
IEEE Transaction on Automatic Control journal.

• Second, the method is adapted for high-dimensional nonlinear continuous-time
systems. To prove the exponential stability, the discrete-time method is applied
to a rigorous discretisation of the continuous system. To prove the positive
invariance, the method is applied on a discretisation of the system with an
Euler scheme. This contribution was presented in Chapter 6 and published in
the Automatica journal [62].

• Third, the guaranteed propagation method is generalised to include singular
mappings and degenerate ellipsoids. This generalisation is made by adding
non-zero eigenvalues, in the singular case. This contribution was presented in
Chapter 7 and at the 7th IFAC ACNDC conference [63].

• Fourth, the stability analysis method is adapted for high-dimensional nonlinear
synchronous hybrid nonlinear systems. The exponential stability is proved by
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applying the discrete method on a rigorous discretisation of the system. This
contribution was presented in Chapter 8.

• Fifth, real-world experiments illustrate the robustness of formation control with
two ROVs. These experiments show that even with an imprecise localisation,
the formation can converge to a neighbourhood of the equilibrium point. This
contribution was presented in Chapter 9.

The method supposes that the mappings of the systems are Lipschitz. When the
system has a continuous-time variable, the method evaluates the Jacobian of the flow
using a guaranteed integration of the variational equation.

This method is unusual in the science domain of automation as it relies on tools
such as guaranteed integration algorithms. However, it is related to Lyapunov Theory
as the ellipsoids involved in the method defined levels of quadratic Lyapunov func-
tions. Compared to a manual search for a Lyapunov function, the method is easier
to apply to complex systems with the presence of non-linearity, high dimensions and
interactions between continuous and discrete variables. It has the potential to solve
stability problems when Lyapunov functions have not been found yet.

However, the method is subject to pessimism in the ellipsoidal propagation. Thus,
in practice, the computed ellipsoids are sometimes very small. The pessimism in-
creases when the system becomes more complex (with higher dimensions, more non-
linearity, more intermediate discrete events,...) and when the system is less stable.
Furthermore, some recommendations for the implementation of the method are listed
below:

• Pessimism can be limited with a good conditioning of the system. The system
must be simplified by removing redundant variables and by normalisation.

• When the ellipsoids are almost degenerated there is a border effect which results
in a lot of pessimism. Some additional manual tuning is required to reduce the
pessimism.

• If the system is barely stable, high-precision libraries are needed to handle small
ellipsoids and small pessimism. Moreover, with better precision, bigger positive
invariant ellipsoids may be found.

Perspective

Several midterm and long-term directions are proposed below. First, the ellipsoidal
stability analysis method can be extended to asynchronous hybrid systems. These
systems are more complex to study, considering that the time of the discrete updates
can be state-dependent and change with the initial condition. To deal with the
variation of the discrete update time, the hybrid system can be discretised with a
Poincare method, presented in [35]. With this complex discretisation, the system is
described by mappings, called Poincare mappings, defined on sections of Rn that are
transverse to the flow of the continuous dynamics, as illustrated by Figure. There
exists some numerical method to compute the Jacobian of a Poincare mapping, as
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in [42]. Thus It is possible to adapt the stability analysis method to a Poincare
discretisation, in order to study an asynchronous hybrid system.

Secondly, the ellipsoidal stability analysis method can be extended to systems
with bounded perturbations. As shown in Chapter 9, underwater robots are subject
to non-neglectable perturbations. Assuming their presence, the robots only converge
on a neighbourhood of the formation. The ellipsoidal stability method could charac-
terise this neighbourhood by computing a positive invariant ellipsoid. To extend the
method to perturbations, the guaranteed ellipsoidal propagation method must also
be extended to systems with bounded perturbation.

Thirdly, the implementation of the ellipsoidal stability analysis could be more
rigorous. The interval operations in the algorithms of this thesis have not all been
detailed. The applications of the thesis use some operations that are not fully rigorous
or time-efficient. By developing a library of efficient interval operations for ellipsoids,
the pessimism in the stability analysis could be reduced.

Finally, additional experiments could be implemented with more robots and more
complex collaboration tasks. With a large fleet, additional challenges will appear and
the formation stability will be more challenging to obtain.
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Appendix

Computation of h (mk)

This section presents the computation of h (mk) from Section 5.6.2.1. From (5.60),
one has

mk+1 =



db,k+1 − d∗

dr,k+1 − d∗

ϕr,k+1 − ϕb,k+1 − 3
π

vb,k+1

vr,k+1

wb,k+1

wr,k+1


. (10.1)

Thus, with (5.55), one deduces

mk+1 =



db,k − d∗ + T · vb,k
dr,k − d∗ + T · vr,k

(ϕr,k + T · wr,k)− (ϕb,k + T · wb,k)− 3
π

vb,k + T · u1,k

vr,k + T · u2,k

wb,k + T · u3,k

db,k

wr,k + T · u4,k

dr,k


. (10.2)

Moreover, with (5.59), one gets

mk+1 =



db,k − d∗ + T · vb,k
dr,k − d∗ + T · vr,k(

ϕr,k − ϕb,k − 3
π

)
+ T · (wr,k − wb,k)

vb,k + T · s · arctan (kp,d · (d∗ − db,k)− kd,d · vb,k)
vr,k + T · s · arctan (kp,d · (d∗ − dr,k)− kd,d · vr,k)

wb,k +
T ·s
db,k

arctan
(
kp,ϕ ·

(
ϕk − π

6
− ϕb,k

)
− kd,ϕ · wb,k

)
wr,k +

T ·s
dr,k

arctan
(
kp,ϕ ·

(
ϕk +

π
6
− ϕr,k

)
− kd,ϕ · wr,k

)


. (10.3)
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Then, from (5.58), one also has

ϕk −
π

6
− ϕb,k =

ϕb,k + ϕr,k

2
− π

6
− ϕb,k,

=
1

2

(
ϕr,k − ϕb,k −

π

3

)
,

=
1

2
m3,k, (10.4)

and

ϕk +
π

6
− ϕr,k =

ϕb,k + ϕr,k

2
+

π

6
− ϕr,k,

= −1

2

(
ϕr,k − ϕb,k −

π

3

)
,

=
1

2
m3,k. (10.5)

Finlay, from (5.60), (10.3), (10.4) and (10.5), one obtains

h (mk) = mk+1,

=



m1,k + T ·m4,k

m2,k + T ·m5,k

m3,k + T · (m7,k −m6,k)
m4,k + sT · arctan (−kp,d ·m1,k − kd,d ·m4,k)
m5,k + sT · arctan (−kp,d ·m2,k − kd,d ·m5,k)

m6,k +
sT

m1,k+d∗
arctan

(
kp,ϕ
2
m3,k − kd,ϕ ·m6,k

)
m7,k +

sT
m2,k+d∗

arctan
(
−kp,ϕ

2
m3,k − kd,ϕ ·m7,k

)


. (10.6)
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Elements of the Jacobian matrix

This section details the elements of the Jacobian matrix from (5.63). One has

J4,1 =
−sTkp,d

(−kp,d ·m1 − kd,d ·m4)
2 + 1

(10.7)

J4,4 = 1− sTkd,d

(−kp,d ·m1 − kd,d ·m4)
2 + 1

(10.8)

J5,2 =
−sTkp,d

(−kp,d ·m2 − kd,d ·m5)
2 + 1

(10.9)

J5,5 = 1− sTkd,d

(−kp,d ·m2 − kd,d ·m5)
2 + 1

(10.10)

J6,1 =
−sT

(m1 + d∗)2
arctan

(
kp,ϕ
2

m3 − kd,ϕ ·m6

)
(10.11)

J6,3 =
sTkp,ϕ

2 (m1 + d∗)

((
kp,ϕ
2
m3 − kd,ϕ ·m6

)2

+ 1

) (10.12)

J6,6 = 1− sTkd,ϕ

(m1 + d∗)

((
kp,ϕ
2
m3 − kd,ϕ ·m6

)2

+ 1

) (10.13)

J7,2 =
−sT

(m2 + d∗)2
arctan

(
−kp,ϕ

2
m3 − kd,ϕ ·m7

)
(10.14)

J7,3 =
−sTkp,ϕ

2 (m2 + d∗)

((
−kp,ϕ

2
m3 − kd,ϕ ·m7

)2

+ 1

) (10.15)

J7,7 = 1− sTkd,ϕ

(m2 + d∗)

((
−kp,ϕ

2
m3 − kd,ϕ ·m7

)2

+ 1

) (10.16)

Proof of Equation (7.39)

From Theorem 7.2, consider the ellipsoid E , the symmetric matrix M , the orthonor-
mal matrix U , the diagonal matrix S = diag (si)i∈J1,nK, the point µout and x ∈ E ,
and the unitary vector of the Cartesian base ei. Let us write

c = UT (f (x)− µout) ,

= (ci)i∈J1,nK . (10.17)

From (7.32), One has

MM+ (f (x)− µout) =
(
USUT

) (
US+UT

)
(f (x)− µout) ,

= USS+UT (f (x)− µout) ,

= USS+c. (10.18)
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Moreover, from (7.34), SS+ is diagonal and its elements are

sis
+
i =

{
0 ifmax

x∈E

∣∣eT
i U

T (f (x)− µout)
∣∣ = 0

1 else

Thus, if sis+i = 0, then ci = 0. As a result, for all i ∈ J1, nK, one obtains

sis
+
i ci = ci.

So, one gets SS+c = c. Thus, one deduces

MM+ (f (x)− µout) = USS+c,

= Uc,

= UUT (f (x)− µout) ,

= (f (x)− µout) . (10.19)

Computation of fx

From (8.46), one has

u3,j = s · arctan
(
kp,ϕ ·

(
ϕj −

π

6
− ϕb,j

))
(10.20)

(8.45)
= s · arctan

(
kp,ϕ ·

(
ϕb,j + ϕr,j

2
− π

6
− ϕb,j

))
(10.21)

= (10.22)
(8.48)
= s · arctan

(
kp,ϕ ·

m3,j

2

)
(10.23)

Similarly, one has

u4,j = −u3,j.

= s · arctan
(
kp,ϕ ·

−m3,j

2

)
(10.24)
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Moreover, one has

fx (x,mj) = ẋ

(8.47)
=



ḋb
ḋr(

ϕ̇r − ϕ̇b

)
d̈b
d̈r
ϕ̈b

ϕ̈r



(8.42)
=



ḋb
ḋr(

ϕ̇r − ϕ̇b

)
u1,j − c · ḋb
u2,j − c · ḋr
u3,j

db
− c · ϕ̇b

u4,j

dr
− c · ϕ̇r



(8.46),(10.23),(10.24)
=



ḋb
ḋr(

ϕ̇r − ϕ̇b

)
s · arctan (kp,d · (d∗ − db,j))− c · ḋb
s · arctan (kp,d · (d∗ − dr,j))− c · ḋr

s·arctan(kp,ϕ·
m3,j

2 )
db

− c · ϕ̇b

−s·arctan(kp,ϕ·
m3,j

2 )
dr

− c · ϕ̇r



(8.47),(8.48)
=



x4

x5

(x7 − x6)
−s · arctan (kp,d ·m1,j)− c · x4

−s · arctan (kp,d ·m2,j)− c · x5
1

x1+d∗
s · arctan

(
kp,ϕ · m3,j

2

)
− c · x6

−1
x2+d∗

s · arctan
(
kp,ϕ · m3,j

2

)
− c · x7


. (10.25)

Computation of hm,qb and hm,qr

One has

hm,qb (x (tj+1) ,mj,v (tj+1)) = mj+1

=

 db,j+1 − d∗,
dr,j+1 − d∗,

ϕr,j+1 − ϕb,j+1 − π
3
.

 . (10.26)
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This mapping is applied when j is odd. So from (8.41), one has

db,j+1 = db (tj+1) ,

ϕb,j+1 = ϕb (tj+1) ,

dr,i+1 = dr,j,

ϕr,i+1 = ϕr,j. (10.27)

As a result,

hm,qb (x (tj+1) ,mj,v (tj+1)) =

 db (tj+1)− d∗,
dr,j − d∗,

ϕr,j − ϕb (tj+1)− π
3
.


=

 x1 (tj+1)
m2,j

x3 (tj+1) + ϕr,j − ϕr (tj+1)


=

 x1 (tj+1)
m2,j

x3 (tj+1)− v2 (tj+1)

 . (10.28)

The mapping hm,qr is obtained with a similar reasoning.

Computation of f v, hv,qb and hv,qr

Since

v (t) =

[
ϕb (t)− ϕb,j

ϕr (t)− ϕr,j

]
, ∀t ∈

[
t+j , tj+1

]
, (10.29)

then

f v (x (t)) = v̇ (t)

=

[
ϕ̇b (t)

ϕ̇r (t)

]
,

=

[
x6 (t)
x7 (t)

]
. (10.30)

Moreover, for every odd j ∈ N one has

hv,qb (v (tj)) = v
(
t+j
)

=

[
ϕb (t)− ϕb,j

ϕr (t)− ϕr,j

]
(10.31)

Since j is odd, one has

ϕb,j = ϕb (t) ,

ϕr,j = ϕr,j−1.
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Therefore one gets

hv,qb (v (tj)) =

[
0

ϕr (t)− ϕr,j−1

]
=

[
0

v2 (tj)

]
.

The same reasoning can be applied on hv,qr .
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